Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Optofluidics, Microfluidics and Nanofluidics

formerly Optofluidics

Ed. by Sada, Cinzia

Open Access
See all formats and pricing
More options …

Modular Platforms for Optofluidic Systems

Marko Brammer
  • This work has been carried out at the Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, 76128 Karlsruhe, Germany / Now with Festo AG, 73734 Esslingen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Timo Mappes
  • This work has been carried out at the Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, 76128 Karlsruhe, Germany / Now with Carl Zeiss AG, Corpoate Research & Technology, 07745 Jena, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-02-27 | DOI: https://doi.org/10.2478/optof-2013-0001


Optofluidics is increasingly gaining impact in a number of different fields of research, namely biology and medicine, environmental monitoring and green energy. However, the market for optofluidic products is still in the early development phase. In this manuscript, we discuss modular platforms as a potential concept to facilitate the transfer of optofluidic sensing systems to an industrial implementation. We present microfluidic and optical networks as a basis for the interconnection of optofluidic sensor modules. Finally, we show the potential for entire optofluidic networks

Keywords: optofluidics; microfluidics; micro total analysis systems; backplane; modular platform


  • [1] D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics,” Nature, vol. 442, pp. 381-386, 2006.Google Scholar

  • [2] C. Monat, R. Comachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light,” Nature Photon., vol. 1, pp. 106-114, 2007.CrossrefGoogle Scholar

  • [3] Y. Fainman, L. P. Lee, D. Psaltis, C. Yang, Optofluidics: Fundamentals, Devices, and Applications, Mc- Graw Hill, New York, US, 2009.Google Scholar

  • [4] A. R. Hawkins, H. Schmidt, Handbook of Optofluidics, CRC Press, Boca Raton, FL, US, 2010.Google Scholar

  • [5] X. Fan and I. M. White, "Optofluidic microsystems for chemical and biological analysis,” Nature Photon., vol. 5, pp. 591-597, 2011.CrossrefGoogle Scholar

  • [6] L. Pang, Y. Fainman, H. M. Chen and L. M. Freeman, "Optofluidic devices and applications in pho- tonics, sensing and imaging,” Lab Chip, vol. 12, pp. 3543-3551, 2012.CrossrefGoogle Scholar

  • [7] A. Manz, N. Graber and H. Widmer, "Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Acuators B, vol. 1, pp. 244-248, 1990.Google Scholar

  • [8] P. Gravesen, J. Branebjerg, and O. S. Jensen, "Microfluidics-a review,” J. Micromech. Microeng., vol. 3, pp. 143-164, 1993.Google Scholar

  • [9] G. M. Whitesides, "The origins and the future of microfluidics,” Nature, vol. 442, pp368-373, 2006.Google Scholar

  • [10] S. C. Terry, J. H. Hermann and J. B. Angel "A gas chromatographic air analyzer fabricated on a silicon wafer,” IEEE Trans. Electron Devices, vol. 26, pp. 1880-1886, 1979.CrossrefGoogle Scholar

  • [11] E. Verpoorte, A. Manz, H. Lüdi, A. E. Bruno, F. Maystre, B. Krattiger, H. M. Widmer, "A silicon flow cell for optical detection in miniaturized total chemical analysis systems,” Sens. Actuators B, vol. 50, pp. 66-70, 1992.Google Scholar

  • [12] R. Zengerle, S. Kluge, M. Richter, and A. Richter, "A bidirectional silicon micropump,” Sens. Actuators A, vol. 50, pp. 81-86, 1995.Google Scholar

  • [13] J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, G. M. Whitesides, "Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis, vol. 21, pp. 27-40 2000.CrossrefGoogle Scholar

  • [14] J. C. McDonald and G. M. Whitesides, "PDMS as a material for fabricating microfluidic devices,” Acc. Chem. Res., vol. 35, pp. 491-499, 2002.CrossrefGoogle Scholar

  • [15] H. Becker, C. Gärtner, "Polymer microfabrication technologies for microfluidic systems,” Anal. Bioanal. Chem., vol. 390, pp. 89-111, 2008.Google Scholar

  • [16] E. Berthier, E. W. K. Young, and D. Beebe, "Engineers are from PDMS-land, Biologists are from Polystyrenia,” Lab Chip, vol. 12, pp. 1224-1237, 2012.CrossrefGoogle Scholar

  • [17] T. D. Boone, Z. H. Fan, H. H. Hooper, A. J. Ricco, H. Tan, and S. J. Williams, "Plastic Advances Microfluidic Devices,” Anal. Chem., vol. 1, pp. 78A-86A, 2002.CrossrefGoogle Scholar

  • [18] G. S. Fiorini and D. T. Chiu, "Disposable microfluidic devices: fabrication, function, and application,” Bio Techniques, vol. 38, pp. 429-446, 2005.Google Scholar

  • [19] Y.-C. Su, J. Shah, and L. Lin, "Implementation and Analysis of Polymeric Microstructures Replication by Micro Injection Molding,” J. Micromech. Microeng., vol. 14, pp. 415-422, 2004.CrossrefGoogle Scholar

  • [20] M. Worgull, A. Kolew, M. Heilig, M. Schneider, H. Dinglreiter, B. Rapp, "Hot embossing of high performance polymers,” Microsyst. Technol., vol. 17, pp. 585-592, 2011.CrossrefGoogle Scholar

  • [21] C. D. Chin, V. Linder and S. K. Sia, "Commercialization of microfluidic point-of-care diagnostic devices,” Lab Chip, vol. 12, pp. 2118-2134, 2012.CrossrefGoogle Scholar

  • [22] A. W. Martinez, S. T. Phillips, and G. M. Whitesides, "Three-dimensional microfluidic devices fabricated in layered paper and tape,” Proc. Natl Acad. Sci. USA, vol. 105, 19606-19611, 2008Google Scholar

  • [23] D. R. Ballerini, X. Li, and W. Shen, "Patterned paper and alternative materials as substrates for lowcost microfluidic diagnostics,” Microfluid. Nanofluid., 2012, DOI: 10.1007/s10404-012-0999-2.CrossrefGoogle Scholar

  • [24] C. W. Tsao and D. L. DeVoe, "Bonding of thermoplastic polymer microfluidics,” Microfluid. Nanofluid., vol. 6, pp. 1-16, 2009.CrossrefGoogle Scholar

  • [25] W. Pfleging and O. Baldus, "Laser patterning and welding of transparent polymers for microfluidic device fabrication,” Proc. SPIE, vol. 6107, pp. 610705-12, 2006.Google Scholar

  • [26] F. J. Kamphoefner, "Ink jet printing,” IEEE Transact. Electron Devices, vol 19., pp. 584-593, 1998.Google Scholar

  • [27] W. E. Haas, "Liquid-crystal display research - the first 15 years,” Mol. Cryst. Liq. Cryst., vol. 94, pp. 1-31, 1983.CrossrefGoogle Scholar

  • [28] P. S. Drzaic, "Polymer dispersed nematic liquid crystal for large area displays and light valves,” J. Appl. Phys., vol. 60, pp. 2142-2148, 1986.CrossrefGoogle Scholar

  • [29] Frost and Sullivan, "Lab on a Chip (LOC) - Advances in Microfluidics,” Market Analysis, www.frost.com, 2004.Google Scholar

  • [30] Yole Développement, "Emerging Markets For Microfluidic Applications”, Market Analysis, www. i-micronews.com, 2011.Google Scholar

  • [31] H. van Heeren, "Standards for connecting microfluidic devices?,” Lab Chip, vol. 12, pp. 1022-1025, 2012.Google Scholar

  • [32] H. Becker, "Hype, hope and hubris: the quest for the killer application in microfluidics,” Lab Chip, vol. 9, pp. 2119-2122, 2009.CrossrefGoogle Scholar

  • [33] R. Marie, A. Kristensen, "Nanofluidic devices towards single DNA molecule sequence mapping,” J. Biophoton., vol. 5, pp. 673-686, 2012.CrossrefGoogle Scholar

  • [34] J. Wu, G. Zheng and L. M. Lee, "Optical imaging techniques in microfluidics and their applications,” Lab Chip, vol. 12, pp. 3566-3575, 2012.CrossrefGoogle Scholar

  • [35] M. Brammer, C. Megnin, A. Voigt, M. Kohl, and T. Mappes, "Modular Optoelectronic Microfluidic Backplane for Total Analysis Systems,” J. Microelectromech. S., accepted for publication.Google Scholar

  • [36] N. Z. Danckwardt, M. Franzreb, A. E. Guber, V. Saile, "Pump-free transport of magnetic particles in microfluidic channels,” J. Magn. Magn. Mater., vol. 323, pp. 2776-2781, 2011.Google Scholar

  • [37] J. Ducrée, S. Haeberle, S. Lutz, S. Pausch, F. Von Stetten and R. Zengerle, "The centrifugal microfluidic Bio-Disk platform,” J. Micromech. Microeng., vol. 17, pp. S103-115, 2007.CrossrefGoogle Scholar

  • [38] R. B. Fair, "Digital microfluidics: Is a true lab-ona- chip possible?,” Microfluid. Nanofluid., vol. 3, pp. 245-281, 2007.CrossrefGoogle Scholar

  • [39] K. Chakrabarty, R. B. Fair, and J. Zeng, "Design Tools for Digital Microfluidic Biochips: Toward Functional Diversification and More than Moore,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst., vol. 29, pp. 1001-1016, 2010.Google Scholar

  • [40] K. W. Oh and C. H. Ahn, "A review of microvalves,” J. Micromech. Microeng., vol. 16, pp. R13-R39, 2006.CrossrefGoogle Scholar

  • [41] T. Grund, C. Megnin, J. Barth, and M. Kohl, "Batch fabrication of shape memory actuated polymer microvalves by transfer bonding techniques,” J. Microelectron. Electron. Packaging, vol. 6, pp. 219-227, 2009.Google Scholar

  • [42] C. Megnin, M. Brammer, H. Luckert, and M. Kohl, "SMA Microvalves with Plug in Interface for a Modular Fluidic Backplane,” Actuator, 18.-20.6.2012, Bremen, 2012.Google Scholar

  • [43] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, S. R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, vol. 288, pp. 113-116, 2000.Google Scholar

  • [44] B. E. Rapp, L. Carneiro, K. Länge, and M. Rapp, "An indirect microfluidic flow injection analysis (FIA) system allowing diffusion free pumping of liquids by using tetradecane as intermediary liquid,” Lab Chip, vol. 9, pp. 354-356, 2009.CrossrefGoogle Scholar

  • [45] B. Mosadegh, T. Bersano-Begey, J. Y. Park, M. A. Burns, and S. Takayama, "Next-generation integrated microfluidic circuits,” Lab Chip, vol. 11, pp. 2813-2818, 2011.CrossrefGoogle Scholar

  • [46] P. K. Yuen, J. T. Bliss, C. C. Thompson, and R. C. Peterson, "Multidimensional modular microfluidic system,” Lab Chip, vol. 9, pp. 3303-3305, 2009.CrossrefGoogle Scholar

  • [47] G. Perozziello, G. Simone, P. Candeloro, F. Gentile, N. Malara, R. Larocca, M. Coluccio, S. A. Pullano, L. Tirinato, O. Geschke, and E. Di Fabrizio, "A Fluidic Motherboard for Multiplexed Simultaneous and Modular Detection in Microfluidic Systems for Biological Application,” Micro Nanosys., vol. 2, pp. 227-238, 2010.CrossrefGoogle Scholar

  • [48] S. M. Langelier, E. Livak-Dahl, A. J. Manzo, B. N. Johnson, N. G. Walter, and M. A. Burns, "Flexible casting of modular self-aligning microfluidic assembly blocks,” Lab Chip, vol. 11, pp. 1679-1688, 2011.CrossrefGoogle Scholar

  • [49] M. Brammer, C. Megnin, T. Parvanta, M. Siegfarth, T. Mappes, and D. G. Rabus, "A modular microfluidic backplane for control and interconnection of optofluidic devices,” IEEE Winter Topicals, pp. 101-102, 2011.Google Scholar

  • [50] A. M. Christensen, D. A. Chang-Yen, and B. K. Gale, "Characterization of interconnects used in PDMS microfluidic systems,” J. Micromech. Microeng., vol. 15, pp. 928-934, 2005.CrossrefGoogle Scholar

  • [51] R. Lo and E. Meng, "Reusable, adhesiveless and arrayed in-plane microfluidic interconnects,” J. Micromech. Microeng., vol. 21, pp. 025021-025035, 2011.Google Scholar

  • [52] C. González, S. D. Collins, and R. L. Smith, "Fluidic Inter-connects for Modular Assembly of Chemical Microsystems,” Sens. Actuators B, vol. 49, pp. 40-45, 1998.Google Scholar

  • [53] G. Perozziello, F. Bundgaard, O. Geschke, "Fluidic inter-connections for microfluidic systems: A new integrated fluidic interconnection allowing plug ’n’ play functionality,” Sens. Actuators B, vol. 130, pp. 947-953, 2008.Google Scholar

  • [54] V. Nittis, R. Fortt,C. H. Legge and A. J. De Mello, "A high-pressure interconnect for chemical microsystem applications,” Lab Chip, vol. 1, pp. 148-152, 2001.CrossrefGoogle Scholar

  • [55] L. Eldada and L. W. Shacklette, "Advances in polymer integrated optics,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 1, pp. 54-68, 2000.CrossrefGoogle Scholar

  • [56] H. Ma, A. K.-Y. Jen, and L. R. Dalton, "Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater., vol. 14, pp. 1339-1365, 2002.Google Scholar

  • [57] D. G. Rabus, P. Henzi, and J. Mohr, "Photonic Integrated Circuits by DUV-Induced Modification of Polymers,” IEEE Photon. Tech. Lett., vol. 17, pp. 591-593, 2005.CrossrefGoogle Scholar

  • [58] D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, "A Bio-Fluidic-Photonic Platform Based on Deep UV Modification of Polymers,” IEEE J. Sel. Topics Quantum Electron., vol. 13, pp. 214-222, 2007.CrossrefGoogle Scholar

  • [59] J. Halldorsson, N. B. Arnfinnsdottir, A. B. Jonsdottir, B. Agnarsson, and K. Leosson, "High index contrast polymer waveguide platform for integrated biophotonics,” Opt. Express, vol. 18, pp. 16217-16226, 2010.CrossrefGoogle Scholar

  • [60] T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, J. Mohr, "Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng., vol 86, pp. 1449-1501, 2009.Google Scholar

  • [61] L. Y. Lin, E. L. Goldstein, and R. W. Tkach, "Freespace micromachined optical switches with submillisecond switching time for large-scale optical crossconnects,” IEEE Photon. Technol. Lett., vol. 10, pp. 525-527, 1998.CrossrefGoogle Scholar

  • [62] T. Yamamoto, J. Yamaguchi, N. Takeuchi, A. Shimizu, E. Higurashi, R. Sawada, Y. Uenishi, "A three- dimensional MEMS optical switching module having 100 input and 100 output ports,” IEEE Photon. Technol. Lett., vol. 10, pp. 1360-1362, 2003.CrossrefGoogle Scholar

  • [63] M. Brammer, C. Megnin, M. Siegfarth, S. Sobich, A. Hofmann, D. G. Rabus, and T. Mappes, "Optofluidic backplane as a platform for modular system design,” Proc. SPIE, vol. 8251, pp. 82510O-8, 2012.Google Scholar

  • [64] U. Wallrabe, H. Dittrich, G. Friedsam, T. Hanemann, J. Mohr, K. Müller, V. Piotter, P. Ruther, T. Schaller, W. Zissler, "Micro-molded easy-assembly multi fiber connector: RibCon§,” Microsyst. Technol., vol. 8, pp. 83-87, 2002.CrossrefGoogle Scholar

  • [65] M. Brammer, M. Siegfarth, T. Mappes, "Optical coupling,” Patent application DE102012004656, US13421485 (15.3.2011).Google Scholar

  • [66] R. Turton, Analysis, synthesis, and design of chemical processes, Prentice Hall, Upper Saddle River, NJ, US, 3. Edt., 2009.Google Scholar

  • [67] K. A. Bakeev, Process analytical technology, Blackwell, Oxford, UK, 2. Edt., 2010.Google Scholar

  • [68] U. Levy, R. Shamai, "Tubable optofluidic devices,” Microfluid. Nanofluid., vol. 4, pp. 97-105, 2008.CrossrefGoogle Scholar

  • [69] N.-T. Nguyen, "Micro-optofluidic Lenses: A review,” Biomicrofluid., vol. 4, pp. 031501-15, 2010.CrossrefGoogle Scholar

  • [70] B. Berge, J. Peseux, "Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E, vol. 3, pp. 159-163, 2000.CrossrefGoogle Scholar

  • [71] T. Krupenkin, S. Yang, and P. Mach, "Tubable liquid microlens,” Appl. Phys. Lett., vol. 82, pp. 316-318, 2003.CrossrefGoogle Scholar

  • [72] S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett., vol. 85, pp. 1128-1130, 2004.CrossrefGoogle Scholar

  • [73] L. Dong and H. R. Jiang, "Variable-focus liquid lens for miniature cameras,” J. Microelectromech. S., vol. 17, pp. 381-392, 2008.Google Scholar

  • [74] J. J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. J. Huang, "Tunable optofluidic microlens through active pressure control of an air-liquid interface,” Microfluid. Nanofluid., vol. 9, pp. 313-318, 2010.CrossrefGoogle Scholar

  • [75] D. Y. Zhang, V. Lien, Y. Berdichevsky, J. H. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett., vol. 82, pp. 3171-3173, 2003.CrossrefGoogle Scholar

  • [76] A. Werber and H. Zappe, "Tubable microfluidic microlenses,” Appl. Opt., vol. 44, pp. 3238-3245, 2005.CrossrefGoogle Scholar

  • [77] H. Ren and S.-T.Wu, "Variable-focus liquid lens,” Opt. Express, vol. 15, pp. 5931-5936, 2007.CrossrefGoogle Scholar

  • [78] D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A Low-Threshold, High-Efficiency Microfluidic Waveguide Laser,” J. Am. Chem. Soc., vol. 127, pp. 8952-8953, 2005.Google Scholar

  • [79] J. C. Gala, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator,” Appl. Phys. Lett., vol. 86, pp. 264101-3, 2005.CrossrefGoogle Scholar

  • [80] Z. Y. Li, Z. Y. Zhang, T. Emery, A. Scherer, and D. Psaltis, "Single mode optofluidic distributed feedback dye laser,” Opt. Express, vol. 14, pp. 696-701, 2006CrossrefGoogle Scholar

  • [81] M. Gersborg-Hansen and A. Kristensen, "Tunability of optofluidic distributed feedback dye lasers,” Opt. Express, vol. 15, pp. 137-142, 2007.CrossrefGoogle Scholar

  • [82] S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, "Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express, vol. 15, pp. 15523-15530, 2007.CrossrefGoogle Scholar

  • [83] J. D. Suter, Y. Sun, D. J. Howard, J. A. Viator, and X. Fan, "PDMS embedded opto-fluidic microring resonator lasers,” Opt. Express, vol. 16, pp. 10248-10253, 2008.CrossrefGoogle Scholar

  • [84] C. Vannahme, M. B. Christiansen, T. Mappes, and A. Kristensen, "Optofluidic dye laser in a foil,” Opt. Express, vol. 18, pp. 9280-9285, 2010.CrossrefGoogle Scholar

  • [85] W. Song and D. Psaltis, "Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett., vol. 96, pp. 081101-3, 2010.CrossrefGoogle Scholar

  • [86] Y. Yang , A. Q. Liu , L. Lei , L. K. Chin , C. D. Ohl , Q. J. Wang and H. S. Yoon, "A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams,” Lab Chip, vol. 11, pp. 3182-3187, 2011.CrossrefGoogle Scholar

  • [87] T. Wienhold, F. Breithaupt, C. Vannahme, M. B. Christiansen, W. Dörfler, A. Kristensen and T. Mappes "Diffusion driven optofluidic dye lasers encapsulated into polymer chips,” Lab Chip, DOI: 10.1039/C2LC40494J.CrossrefGoogle Scholar

  • [88] D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, "Dynamic control of liquid-core/liquidcladding optical waveguides,” Proc. Ntl Acad. Sci. USA, vol. 101, pp. 12434-12438, 2004.CrossrefGoogle Scholar

  • [89] P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, "Hollow-core waveguide characterization by optically induced particle transport,” Opt. Lett., vol. 33, pp. 672-674, 2008.CrossrefGoogle Scholar

  • [90] H. Schmidt and A. R. Hawkins, "Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid., vol. 4 pp. 3-16, 2008.Google Scholar

  • [91] A. R. Hawkins and H. Schmidt, "Optofluidic waveguides: II. Fabrication and structtures,” Microfluid. Nanofluid., vol. 4 pp. 17-32, 2008.CrossrefGoogle Scholar

  • [92] S. H. Cho, "Optofluidic Waveguides in Teflon AFCoated PDMS Microfluidic Channels,” IEEE Phton. Technol. Lett., vol. 21, pp. 1057-1059, 2009.Google Scholar

  • [93] J. D. Suter, W. Lee, D. J. Howard, E. Hoppmann, I. M. White, and X. Fan, "Demonstration of the coupling of optofluidic ring resonator lasers with liquid waveguides,” Opt. Lett., vol. 35, pp. 2997-2999, 2010.CrossrefGoogle Scholar

  • [94] A. J. Chung and D. Erickson, "Optofluidic waveguides for reconfigurable photonic systems,” Opt. Express, vol. 19, pp. 8602-8609, 2011.CrossrefGoogle Scholar

  • [95] N.-T. Nguyen, T.-F. Kong, J.-H. Goh, and C. L.-N. Low, "A micro optofluidic splitter and switch based on hydrodynamic spreading,” J. Micromech. Microeng., vol. 17, pp. 2169-2174, 2007.CrossrefGoogle Scholar

  • [96] A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, "Optofluidc 1x4 Switch,” Opt. Express, vol. 16, pp. 13499-13508, 2008.CrossrefGoogle Scholar

  • [97] B.-T. Liao, H.-H. Shen, H.-H. Liao, and Y.-J. Yang, "A bi-stable 2x2 optical switch monolithically integrated with variable optical attenuators,” Opt. Express, vol. 17, pp. 19919-19925, 2009.CrossrefGoogle Scholar

  • [98] A. H. J. Yang and D. Erickson, "Optofluidic ring resonator switch for optical particle transport,” Lab Chip, vol. 10, pp. 769-774, 2010.CrossrefGoogle Scholar

  • [99] W. Song and D. Psaltis, "Pneumatically tunable optofluidic 2x2 switch for reconfigurable optical ciruit,” Lab Chip, vol. 11, pp. 2397-2402, 2011. CrossrefGoogle Scholar

About the article

Received: 2012-12-21

Accepted: 2012-12-21

Published Online: 2013-02-27

Published in Print: 2014-01-01

Citation Information: Optofluidics, Microfluidics and Nanofluidics, Volume 1, Issue 1, ISSN (Online) 2300-7435, DOI: https://doi.org/10.2478/optof-2013-0001.

Export Citation

© 2013 Marko Brammer, Timo Mappes . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in