Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Optofluidics, Microfluidics and Nanofluidics

formerly Optofluidics

Ed. by Sada, Cinzia

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2300-7435
See all formats and pricing
In This Section

Structured attachment of bacterial molecular motors for defined microflow induction

Mike Woerdemann
  • Institute of Applied Physics, University of Münster, Corrensstraße 2/4, 48149 Münster, Germany
/ Florian Hörner
  • Institute of Applied Physics, University of Münster, Corrensstraße 2/4, 48149 Münster, Germany
/ Cornelia Denz
  • Institute of Applied Physics, University of Münster, Corrensstraße 2/4, 48149 Münster, Germany
Published Online: 2014-04-24 | DOI: https://doi.org/10.2478/optof-2014-0001

Abstract

Bacterial rotational motor complexes that propel flagellated bacteria possess unique properties like their size of a few nanometres and the ability of selfreproduction that have led to various exciting applications including biohybrid nano-machines. One mandatory prerequisite to utilize bacterial nano motors in fluid applications is the ability to transfer force and torque to the fluid, which usually can be achieved by attachment of the bacterial cell to adequate surfaces. Additionally, for optimal transfer of force or torque, precise control of the position down to the single cell level is of utmost importance. Based on a PIV (particle image velocimetry) evaluation of the induced flow of single bacteria,we propose and demonstrate attachment of arbitrary patterns of motile bacterial cells in a fast light-based two-step process for the first time to our knowledge. First, these cells are pre-structured by holographic optical tweezers and then attached to a homogeneous, polystyrene-coated surface. In contrast to the few approaches that have been implemented up to now and which rely on pre-structured surfaces, our scheme allows for precise control on a single bacterium level, is versatile, interactive and has low requirements with respect to the surface preparation.

This article offers supplementary material which is provided at the end of the article.

Keywords : holographic optical tweezers; micromanipulation; Bacillus subtilis; rod-shaped bacteria; microfluidics

References

  • [1] D. B. Weibel, W. R. DiLuzio, and G. M. Whitesides, Microfabrication meets microbiology, Nat. Rev. Microbiol. 5, 2007, 209-218 [Web of Science] [PubMed] [Crossref]

  • [2] S. Rozhok, Z. F. Fan, D. Nyamjav, C. Liu, C. A. Mirkin, and R. C. Holz, Attachment of motile bacterial cells to prealigned holed microarrays, Langmuir 22, 2006, 11251-11254 [Crossref] [PubMed]

  • [3] N. Darnton, L. Turner, K. Breuer, H. C. and Berg, Moving fluid with bacterial carpets, Biophys. J. 86, 2004, 1863-1870 [Crossref]

  • [4] L. H. Cisneros, R. Cortez, C. Dombrowski, R. E. Goldstein, and J. O. Kessler, Fluid dynamics of self-propelled microorganisms, from individual to concentrated populations, Exp. Fluids 43, 2007, 737-753 [Crossref] [Web of Science]

  • [5] H. C. Berg, The rotary motor of bacterial flagella, Annu. Rev. Biochem. 72, 2003, 19-54

  • [6] R. M. Berry and H. C Berg., Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers, Proc. Natl. Acad. Sci. U.S.A. 94, 1997, 14433-14337

  • [7] C. A. Solari, J. O. Kessler, and R. E. Goldstein, Motiliy, mixing and multicellularity, Genet. Program Evolvable Mach 8, 2007, 115-129

  • [8] C. Holz, D. Opitz, J. Mehlich, B. J. Ravoo, and B. Maier, Bacterial motility and clustering guided by microcontact printing, Nano Lett. 9, 2009, 4553-4557 [Crossref] [PubMed] [Web of Science]

  • [9] S. Rozhok, C. K. Shen, P. H. Littler, Z. Fan, C. Liu, C. A. Mirkin, and R. C. Holz, Methods for fabricating microarrays of motile bacteria, Small 1, 2005, 445-451

  • [10] J. F. Jones and D. Velegol, Laser trap studies of end-on E. coli adhesion to glass, Colloid Surface B 50, 2006, 66-71 [Crossref]

  • [11] K. Hori and S. Matsumoto, Biochem., Bacterial adhesion: From mechanism to control, Eng. J. 48, 2010, 424-434 [Web of Science]

  • [12] H. M. Haruff, J. Munakata-Marr, and D. W. M. Marr, Directed bacterial surface attachment via optical trapping, Colloid Surface B 27, 2002, 189-195

  • [13] E. Dufresne and D. Grier, Optical tweezer arrays and optical substrates created with diffractive optical elements, Rev. Sci. Instrum. 69, 1998, 1974-1977

  • [14] F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, Full 3D translational and rotational optical control of multiple rod-shaped bacteria, J. Biophoton. 3, 2010, 468-475 [Crossref]

  • [15] M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers, Adv. Mater. 22, 2010, 4176-4179 [Web of Science]

  • [16] K. Neuman, E. Chadd, G. Liou, K. Bergman, and S. Block, Characterization of photodamage to Escherichia coli in optical traps, Biophys. J. 77, 1999, 2856-2863

  • [17] R. Bowman, D. Preece, G. Gibson, and M. Padgett, Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers, J. Opt. 13, 2011, 044003

  • [18] G. Ordal and D. Goldman, Chemotaxis away from uncouplers of oxidative phosphorylation in Bacillus subtilis, Science 189, 1975, 802-805

  • [19] U. Mirsaidov, J. Scrimgeour, W. Timp, K. Beck, M. Mir, P. Matsudaira, and G. Timp, Live cell lithography: Using optical tweezers to create synthetic tissue, Lab Chip 8, 2008, 2174-2181 [Crossref] [PubMed] [Web of Science]

  • [20] G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, Laser-guided assembly of heterotypic three-dimensional living cell microarrays, Biophys. J. 91, 2006, 3465-3473

  • [21] B. Behkam and M. Sitti, Bacterial flagella-based propulsion and on/off motion control of microscale objects, Appl. Phys. Lett. 90, 2007, 023902 [Web of Science]

  • [22] S. Ayano, Y. Wakamoto, S. Yamashita, and K. Yasuda, Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system, Biochem. Biophys. Res. Commun. 350, 2006, 678-684

  • [23] S. M. Block, J. E. Segall, and H. C. Berg, Impulse responses in bacterial chemotaxis, Cell 31, 1982, 215-226 [Crossref] [PubMed]

  • [24] S. Okuda, R. Igarashi, Y. Kusui, Y. Kasahara, and H. Morisaki, Electrophoretic Mobilty of Bacillus subtilis Knockout Mutants with and without Flagella, J. Bacteriol. 185(13), 2003, 3711-3717

  • [25] J. S. Dickson and M. Koohmaraie, Cell Surface Charge Characteristics and Their Relationship to Bacterial Attachment to Meat Surfaces, Appl. Environ. Microbiol. 55, 1989, 832-836 [PubMed]

  • [26] C. D. Meinhart, S. T. Wereley, and J. G. Santiago, , A PIV algorithm for estimating time-averaged velocity fields, Journal of Fluids Engineering 122, 2000, 285-289

  • [27] N. Mori, and C. Kuang-An, Introduction to MPIV - PIV toolbox in MATLAB - version 0.97, 2009

  • [28] M. Rosenberg, Bacterial adherence to polystyrene: a replica method of screening for bacterial hydrophobicity, Appl. Environ. Microbiol. 42, 1981, 375-377

  • [29] T. L. Min, P. J. Mears, L. M. Chubiz, C. V. Rao, I. Golding, and Y. R. Chemla, High-resolution, long-term characterization of bacterial motility using optical tweezers, Nat. Methods 6(11), 2009, 831-835 [PubMed] [Crossref] [Web of Science]

  • [30] J. Iwazawa, Y. Imae, and S. Kobayashi, Study of the torque of the bacterial flagellar motor using a rotating electric field, Biophys. J. 64(3), 1993, 925-933

  • [31] N. C. Darnton, L. Turner, S. Rojevsky, and H. C. Berg, On Torque and Tumbling in Swimming Escherichia coli, J. Bacteriol. 189(5), 2007, 1756-1764 [Web of Science]

  • [32] S. H. Larsen, R. W. Reader, E. N. Kort, W. Tso, and J. Adler, Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli, Nature 249, 1974, 74-77

  • [33] H. C. Berg, Dynamic properties of bacterial flagellar motors, Nature 249, 1974, 77-79

  • [34] G. W. Ordal, Control of Tumbling in Bacterial Chemotaxis by Divalent Cation, J. Bacteriol. 126, 1976, 706-711

  • [35] H. Szurmant, T. J. Muff, and G. W. Ordal, Bacillus subtilis CheC and FliY Are Members of a Novel Class of CheY-P-hydrolyzing Proteins in the Chemotactic Signal Transduction Cascade, J. Biol. Chem. 279, 2004, 21787-21792

  • [36] M. Veiga-Gutiérrez, M. Woerdemann, E. Prasetyanto, C. Denz, and L. De Cola, Optical-Tweeezers Assembly-Line for the Construction of Complex Functional Zeolite L Structures, Adv. Mater. 24, 2012, 5199-5204

  • [37] L. Dewenter, C. Alpmann, M. Woerdemann, and C. Denz, Videobased analysis of the rotational behaviour of rod-shaped, self-propelled bacteria in holographic optical tweezers, Proc. SPIE, 2012, 8427, 84270N-10

  • [38] K. Ramser and D. Hanstorp, Optical manipulation for singlecell studies, J. Biophoton. 3, 2010, 187-206 [Crossref]

About the article

Received: 2014-01-29

Accepted: 2014-02-23

Published Online: 2014-04-24

Published in Print: 2014-01-01



Citation Information: Optofluidics, Microfluidics and Nanofluidics, ISSN (Online) 2300-7435, DOI: https://doi.org/10.2478/optof-2014-0001. Export Citation

© 2014 Mike Woerdemann et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Supplementary Article Materials

Comments (0)

Please log in or register to comment.
Log in