Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Optofluidics, Microfluidics and Nanofluidics

formerly Optofluidics

Ed. by Sada, Cinzia

1 Issue per year

Emerging Science

Open Access
See all formats and pricing
More options …

Structured attachment of bacterial molecular motors for defined microflow induction

Mike Woerdemann
  • Institute of Applied Physics, University of Münster, Corrensstraße 2/4, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Florian Hörner
  • Institute of Applied Physics, University of Münster, Corrensstraße 2/4, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cornelia Denz
  • Institute of Applied Physics, University of Münster, Corrensstraße 2/4, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-24 | DOI: https://doi.org/10.2478/optof-2014-0001


Bacterial rotational motor complexes that propel flagellated bacteria possess unique properties like their size of a few nanometres and the ability of selfreproduction that have led to various exciting applications including biohybrid nano-machines. One mandatory prerequisite to utilize bacterial nano motors in fluid applications is the ability to transfer force and torque to the fluid, which usually can be achieved by attachment of the bacterial cell to adequate surfaces. Additionally, for optimal transfer of force or torque, precise control of the position down to the single cell level is of utmost importance. Based on a PIV (particle image velocimetry) evaluation of the induced flow of single bacteria,we propose and demonstrate attachment of arbitrary patterns of motile bacterial cells in a fast light-based two-step process for the first time to our knowledge. First, these cells are pre-structured by holographic optical tweezers and then attached to a homogeneous, polystyrene-coated surface. In contrast to the few approaches that have been implemented up to now and which rely on pre-structured surfaces, our scheme allows for precise control on a single bacterium level, is versatile, interactive and has low requirements with respect to the surface preparation.

This article offers supplementary material which is provided at the end of the article.

Keywords : holographic optical tweezers; micromanipulation; Bacillus subtilis; rod-shaped bacteria; microfluidics


  • [1] D. B. Weibel, W. R. DiLuzio, and G. M. Whitesides, Microfabrication meets microbiology, Nat. Rev. Microbiol. 5, 2007, 209-218Web of SciencePubMedCrossrefGoogle Scholar

  • [2] S. Rozhok, Z. F. Fan, D. Nyamjav, C. Liu, C. A. Mirkin, and R. C. Holz, Attachment of motile bacterial cells to prealigned holed microarrays, Langmuir 22, 2006, 11251-11254CrossrefPubMedGoogle Scholar

  • [3] N. Darnton, L. Turner, K. Breuer, H. C. and Berg, Moving fluid with bacterial carpets, Biophys. J. 86, 2004, 1863-1870CrossrefGoogle Scholar

  • [4] L. H. Cisneros, R. Cortez, C. Dombrowski, R. E. Goldstein, and J. O. Kessler, Fluid dynamics of self-propelled microorganisms, from individual to concentrated populations, Exp. Fluids 43, 2007, 737-753CrossrefWeb of ScienceGoogle Scholar

  • [5] H. C. Berg, The rotary motor of bacterial flagella, Annu. Rev. Biochem. 72, 2003, 19-54Google Scholar

  • [6] R. M. Berry and H. C Berg., Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers, Proc. Natl. Acad. Sci. U.S.A. 94, 1997, 14433-14337Google Scholar

  • [7] C. A. Solari, J. O. Kessler, and R. E. Goldstein, Motiliy, mixing and multicellularity, Genet. Program Evolvable Mach 8, 2007, 115-129Google Scholar

  • [8] C. Holz, D. Opitz, J. Mehlich, B. J. Ravoo, and B. Maier, Bacterial motility and clustering guided by microcontact printing, Nano Lett. 9, 2009, 4553-4557CrossrefPubMedWeb of ScienceGoogle Scholar

  • [9] S. Rozhok, C. K. Shen, P. H. Littler, Z. Fan, C. Liu, C. A. Mirkin, and R. C. Holz, Methods for fabricating microarrays of motile bacteria, Small 1, 2005, 445-451Google Scholar

  • [10] J. F. Jones and D. Velegol, Laser trap studies of end-on E. coli adhesion to glass, Colloid Surface B 50, 2006, 66-71CrossrefGoogle Scholar

  • [11] K. Hori and S. Matsumoto, Biochem., Bacterial adhesion: From mechanism to control, Eng. J. 48, 2010, 424-434Web of ScienceGoogle Scholar

  • [12] H. M. Haruff, J. Munakata-Marr, and D. W. M. Marr, Directed bacterial surface attachment via optical trapping, Colloid Surface B 27, 2002, 189-195Google Scholar

  • [13] E. Dufresne and D. Grier, Optical tweezer arrays and optical substrates created with diffractive optical elements, Rev. Sci. Instrum. 69, 1998, 1974-1977Google Scholar

  • [14] F. Hörner, M. Woerdemann, S. Müller, B. Maier, and C. Denz, Full 3D translational and rotational optical control of multiple rod-shaped bacteria, J. Biophoton. 3, 2010, 468-475CrossrefGoogle Scholar

  • [15] M. Woerdemann, S. Gläsener, F. Hörner, A. Devaux, L. De Cola, and C. Denz, Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers, Adv. Mater. 22, 2010, 4176-4179Web of ScienceGoogle Scholar

  • [16] K. Neuman, E. Chadd, G. Liou, K. Bergman, and S. Block, Characterization of photodamage to Escherichia coli in optical traps, Biophys. J. 77, 1999, 2856-2863Google Scholar

  • [17] R. Bowman, D. Preece, G. Gibson, and M. Padgett, Stereoscopic particle tracking for 3D touch, vision and closed-loop control in optical tweezers, J. Opt. 13, 2011, 044003Google Scholar

  • [18] G. Ordal and D. Goldman, Chemotaxis away from uncouplers of oxidative phosphorylation in Bacillus subtilis, Science 189, 1975, 802-805Google Scholar

  • [19] U. Mirsaidov, J. Scrimgeour, W. Timp, K. Beck, M. Mir, P. Matsudaira, and G. Timp, Live cell lithography: Using optical tweezers to create synthetic tissue, Lab Chip 8, 2008, 2174-2181CrossrefPubMedWeb of ScienceGoogle Scholar

  • [20] G. M. Akselrod, W. Timp, U. Mirsaidov, Q. Zhao, C. Li, R. Timp, K. Timp, P. Matsudaira, and G. Timp, Laser-guided assembly of heterotypic three-dimensional living cell microarrays, Biophys. J. 91, 2006, 3465-3473Google Scholar

  • [21] B. Behkam and M. Sitti, Bacterial flagella-based propulsion and on/off motion control of microscale objects, Appl. Phys. Lett. 90, 2007, 023902Web of ScienceGoogle Scholar

  • [22] S. Ayano, Y. Wakamoto, S. Yamashita, and K. Yasuda, Quantitative measurement of damage caused by 1064-nm wavelength optical trapping of Escherichia coli cells using on-chip single cell cultivation system, Biochem. Biophys. Res. Commun. 350, 2006, 678-684Google Scholar

  • [23] S. M. Block, J. E. Segall, and H. C. Berg, Impulse responses in bacterial chemotaxis, Cell 31, 1982, 215-226CrossrefPubMedGoogle Scholar

  • [24] S. Okuda, R. Igarashi, Y. Kusui, Y. Kasahara, and H. Morisaki, Electrophoretic Mobilty of Bacillus subtilis Knockout Mutants with and without Flagella, J. Bacteriol. 185(13), 2003, 3711-3717Google Scholar

  • [25] J. S. Dickson and M. Koohmaraie, Cell Surface Charge Characteristics and Their Relationship to Bacterial Attachment to Meat Surfaces, Appl. Environ. Microbiol. 55, 1989, 832-836PubMedGoogle Scholar

  • [26] C. D. Meinhart, S. T. Wereley, and J. G. Santiago, , A PIV algorithm for estimating time-averaged velocity fields, Journal of Fluids Engineering 122, 2000, 285-289Google Scholar

  • [27] N. Mori, and C. Kuang-An, Introduction to MPIV - PIV toolbox in MATLAB - version 0.97, 2009Google Scholar

  • [28] M. Rosenberg, Bacterial adherence to polystyrene: a replica method of screening for bacterial hydrophobicity, Appl. Environ. Microbiol. 42, 1981, 375-377Google Scholar

  • [29] T. L. Min, P. J. Mears, L. M. Chubiz, C. V. Rao, I. Golding, and Y. R. Chemla, High-resolution, long-term characterization of bacterial motility using optical tweezers, Nat. Methods 6(11), 2009, 831-835PubMedCrossrefWeb of ScienceGoogle Scholar

  • [30] J. Iwazawa, Y. Imae, and S. Kobayashi, Study of the torque of the bacterial flagellar motor using a rotating electric field, Biophys. J. 64(3), 1993, 925-933Google Scholar

  • [31] N. C. Darnton, L. Turner, S. Rojevsky, and H. C. Berg, On Torque and Tumbling in Swimming Escherichia coli, J. Bacteriol. 189(5), 2007, 1756-1764Web of ScienceGoogle Scholar

  • [32] S. H. Larsen, R. W. Reader, E. N. Kort, W. Tso, and J. Adler, Change in direction of flagellar rotation is the basis of the chemotactic response in Escherichia coli, Nature 249, 1974, 74-77Google Scholar

  • [33] H. C. Berg, Dynamic properties of bacterial flagellar motors, Nature 249, 1974, 77-79Google Scholar

  • [34] G. W. Ordal, Control of Tumbling in Bacterial Chemotaxis by Divalent Cation, J. Bacteriol. 126, 1976, 706-711Google Scholar

  • [35] H. Szurmant, T. J. Muff, and G. W. Ordal, Bacillus subtilis CheC and FliY Are Members of a Novel Class of CheY-P-hydrolyzing Proteins in the Chemotactic Signal Transduction Cascade, J. Biol. Chem. 279, 2004, 21787-21792Google Scholar

  • [36] M. Veiga-Gutiérrez, M. Woerdemann, E. Prasetyanto, C. Denz, and L. De Cola, Optical-Tweeezers Assembly-Line for the Construction of Complex Functional Zeolite L Structures, Adv. Mater. 24, 2012, 5199-5204Google Scholar

  • [37] L. Dewenter, C. Alpmann, M. Woerdemann, and C. Denz, Videobased analysis of the rotational behaviour of rod-shaped, self-propelled bacteria in holographic optical tweezers, Proc. SPIE, 2012, 8427, 84270N-10Google Scholar

  • [38] K. Ramser and D. Hanstorp, Optical manipulation for singlecell studies, J. Biophoton. 3, 2010, 187-206 CrossrefGoogle Scholar

About the article

Received: 2014-01-29

Accepted: 2014-02-23

Published Online: 2014-04-24

Published in Print: 2014-01-01

Citation Information: Optofluidics, Microfluidics and Nanofluidics, Volume 1, Issue 1, ISSN (Online) 2300-7435, DOI: https://doi.org/10.2478/optof-2014-0001.

Export Citation

© 2014 Mike Woerdemann et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Álvaro Barroso, Malte Grüner, Taylor Forbes, Cornelia Denz, and Cristian A. Strassert
ACS Applied Materials & Interfaces, 2016, Volume 8, Number 24, Page 15046
Álvaro Barroso, Shirin Landwerth, Mike Woerdemann, Christina Alpmann, Tim Buscher, Maike Becker, Armido Studer, and Cornelia Denz
Biomedical Microdevices, 2015, Volume 17, Number 2

Comments (0)

Please log in or register to comment.
Log in