Jump to ContentJump to Main Navigation
Show Summary Details

Optofluidics, Microfluidics and Nanofluidics

formerly Optofluidics

Ed. by Sada, Cinzia

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2300-7435
See all formats and pricing

T-junction droplet generator realised in lithium niobate crystals by laser ablation

G. Pozza
  • Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy
/ S. Kroesen
  • Nonlinear Photonics Group, Institute of Applied Physics, University of Münster Corrensstrasse 2/4, 48149 Münster, Germany
/ G. Bettella
  • Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy
/ A. Zaltron
  • Corresponding author
  • Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy and Nonlinear Photonics Group, Institute of Applied Physics, University of Münster Corrensstrasse 2/4, 48149 Münster, Germany
  • Email:
/ M. Esseling
  • Nonlinear Photonics Group, Institute of Applied Physics, University of Münster Corrensstrasse 2/4, 48149 Münster, Germany
/ G. Mistura
  • Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy
/ P. Sartori
  • Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy
/ E. Chiarello
  • Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy
/ M. Pierno
  • Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy
/ C. Denz
  • Nonlinear Photonics Group, Institute of Applied Physics, University of Münster Corrensstrasse 2/4, 48149 Münster, Germany
/ C. Sada
  • Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy
Published Online: 2014-11-19 | DOI: https://doi.org/10.2478/optof-2014-0003

Abstract

A femtosecond laser at 800 nm was used to create micro-fluidic circuits on lithium niobate (LiNbO3) substrates by means of laser ablation, using different scanning velocities (100-500 μm/s) and laser pulse energies (1-20 μJ). The T-junction geometry was exploited to create on y-cut LiNbO3 crystals a droplet generator, whose microfluidic performance was characterized in a wide range of droplet generation frequencies, from few Hz to about 1 kHz.

This article offers supplementary material which is provided at the end of the article.

Keywords : Microfluidic; lithium niobate; laser ablation; droplet generator; T-junction

References

  • [1] C. Denz, K.-O.Müller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-codedmultiplexing”, IEEE Journal of Selected Topics in Quantum Electronics 4, 1998, 832 [Crossref]

  • [2] S. Breer and K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate”, Applied Physics B 66, 1998, 339

  • [3] Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim and H.-Y. Lee, “Second-harmonic generation in periodically poled lithiumniobate waveguides fabricated by femtosecond laser pulses”, Applied Physics Letters 89, 2006, 171103 [Crossref]

  • [4] M. Carrascosa, M. Cabrera and F. Agulló-López, “Long-Lifetime Photorefractive Holographic Devices via Thermal Fixing Methods”, Infrared Holography for Optical Communications 86, 2003, 91

  • [5] L. Pang, H. M. Chen, L. M. Freeman and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging”, Lab on Chip 12, 2012, 3543 [Web of Science]

  • [6] D. Psaltis, S. R. Quake and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics”, Nature 442, 2006, 381 [Crossref] [PubMed]

  • [7] M. L. Y. Sin, J. Gao, J. C. Liao and P. K. Wong, “System Integration - A Major Step toward Lab on a Chip”, Journal of Biological Engineering 5, 2011, 1

  • [8] M. F. Schneider, Z. Guttenberg, S. W. Schneider, K. Sritharan, V. M. Myles, U. Pamukci and A. Wixforth, “An Acoustically Driven Microliter FlowChamber on a Chip (μFCC) for Cell-Cell and Cell- Surface Interaction Studies”, A European Journal of Chemical Physics and Physical Chemistry 9, 2008, 641 [PubMed] [Web of Science]

  • [9] J. Friend and L. Y. Yeo, "Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics", Reviews of Modern Physics 83. 2011, 647 [Web of Science]

  • [10] H. A. Eggert, F. Y. Kuhnert, and K. Buse, “Trapping of dielectric particles with light-induced space-charge fields”, Applied Physics Letters 90, 2007, 241909 [Crossref]

  • [11] M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers”, Applied Physics B 113, 2013, 191 [Web of Science]

  • [12] M. Esseling, A. Zaltron, C. Sada and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate”, Applied Physics Letters 103, 2013, 061115 [Crossref]

  • [13] M. Jubera, A. García-Cabañes, J.Olivares, A. Alcazar, and M. Carrascosa, “Particle trapping and structuring on the surface of LiNbO3:Fe optical waveguides using photovoltaic fields”, Optics Letters 39, 2014, 649 [Crossref] [Web of Science]

  • [14] M. Sridhar, D. K. Maurya, J. R. Friend and L. Y. Yeo, “Focused ion beam milling of microchannels in lithiumniobate”, Biomicrofluidics 6, 2012, 1 [Web of Science]

  • [15] M. Chauvet, L. Fares and F. Devaux, “Self-trapped beams for fabrication of optofluidic chips”, Proceedings of SPIE 8434, 2012, 84340Q-1

  • [16] H. Song, D. L. Chen and R. F. Ismagilov, “Reactions in Droplets in Microfluidic Channels”, Angewandte Chemie International Edition 45, 2006, 7336 [Crossref]

  • [17] K. Jensen and A. Lee, “The science and applications of droplets in microfluidic devices”, Lab on Chip 4, 2004, 31N

  • [18] V. Chokkalingam, B. Weidenhof, M. Krämer, W. F. Maier, S. Herminghaus and R. Seemann, “Optimized droplet-based microfluidics scheme for sol-gel reactions”, Lab on Chip 10, 2010, 1700 [PubMed] [Web of Science]

  • [19] C. N. Baroud, M. R. de Saint Vincent, and J. P. Delville, "An optical toolbox for total control of droplet microfluidics," Lab on Chip 7, 2007, 1029 [PubMed] [Web of Science]

  • [20] J.C Baret, V.Taly, M. Ryckelynck, C. A. Merten, A.D. Griflths, “Droplets and emulsions: very high-throughput screening in biology”, Medicine Science 25, 2009, 627

  • [21] E. Piccin, D. Ferraro, P. Sartori, E. Chiarello, M. Pierno and G. Mistura, “Generation of water-in-oil and oil-in-water microdroplets in polyester-toner microfluidic devices”, Sensors and Actuators B 196, 2014, 525 [Web of Science]

  • [22] P.Watts and S. J. Haswell, “The application of micro reactors for organic synthesis”, Chemical Society Reviews 34, 2005, 235 [PubMed] [Crossref]

  • [23] V. Noireaux and A. Libchaber , “A vesicle bioreactor as a step toward an artificial cell assembly”, Proceeding of National Academy of Sciences U. S. A. 101, 2004, 17669

  • [24] M. S. Long, C. D. Jones, M. R. Helfrich, L. K. Mangeney-Slavin, and C. D. Keating, “Dynamic microcompartmentation in synthetic cells” Proceeding of National Academy of Sciences U. S. A. 102, 2005, 5920

  • [25] H. J. Choi and C. D. Montemagno, “Biosynthesis within a bubble architecture”, Nanotechnology 17, 2006, 2198 [Crossref]

  • [26] A. Gupta and R. Kumar, “Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction”, Microfluidics and Nanofluidics 8, 2010, 799 [Crossref] [Web of Science]

  • [27] P. Garstecki, M. J. Fuerstman, H. A. Stone and G. M. Whitesides,“ Formation of droplets and bubbles in a microfluidic T-junctionscaling and mechanism of break-up”, Lab on Chip 6, 2006, 437

  • [28] N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, M.-P. Bernal,“High aspect ratio lithiumniobate ridge waveguides fabricated by optical grade dicing” Journal of Physics D: Applied Physics 44, 2011, 305101

  • [29] H. Hu, R. Ricken, W. Sohler and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching”, IEEE Photonics Techology Letters 19, 2007, 417

  • [30] P. Sivarajah, C. A. Werley, B. K. Ofori-Okai, K. A. Nelson, “Chemically assisted femtosecond laser machining for applications in LiNbO3 and LiTaO3”, Applied Physics A, 2013, 112 [Web of Science]

  • [31] J-W. Lee, Y.-K. Cho, M.-W. Cho, G.-H. Kim and T.-J. Je, “Optical transmittance recovery of powder blasted micro fluidic channels on fused silica glass using MR polishing”, International Journal of Precision Engeneering and Manufacturing 13, 2012, 1925

  • [32] R. Osellame H. J. W. M. Hoekstra, G. Cerullo and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips”, Laser Photonics Reviews 5, 2011, 442 [Web of Science]

  • [33] V. Maselli, J. R. Grenier, S. Ho and P.R. Herman, “Femtosecond laser writtien optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel”, Optic Express 17, 2009, 11719 [Crossref]

  • [34] R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics”, Report on Progress in Physics 75, 2012, 016601

  • [35] C.N. Baroud, F. Gallaire and R. Dangla, “Dynamics of microfluidic droplets” Lab on Chip 10, 2010, 2032 [PubMed]

  • [36] J.H. Xu, S. W. Li, J. Tan, Y. J. Wang, and G. S. Luo, “Controllable Preparation of Monodisperse O/W and W/O Emulsions in the Same Microfluidic Device, Langmuir 22, 2006, 7943 [PubMed] [Crossref]

  • [37] J.H. Xu, S. W. Li, J. Tan and G. S. Luo, “Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping”, Microfluidics Nanofluidics 5, 2008, 711 [Web of Science]

  • [38] V. Steijn, C. R. Kleijn and M. T. Kreutzer, “Predictive model for the size of bubbles and droplets created in microfluidic Tjunctions” Lab on Chip 10, 2010, 2513 [PubMed] [Web of Science]

  • [39] Bureau International des Poids et Mesures, Evaluation of measurement data - Guide to the expression of uncertainty in measurement, (2005)

  • [40] G. F. Christopher, N. N. Noharuddin, J. A. Taylor and S. L. Anna, “Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions”, Physical ReviewE 78, 2008, 036317-1

About the article

Received: 2014-07-25

Accepted: 2014-09-24

Published Online: 2014-11-19

Published in Print: 2014-01-01


Citation Information: Optofluidics, Microfluidics and Nanofluidics, ISSN (Online) 2300-7435, DOI: https://doi.org/10.2478/optof-2014-0003. Export Citation

© 2014. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Tien-Li Chang, Zhao-Chi Chen, Ya-Wei Lee, Yan-Hom Li, and Chien-Ping Wang
Microelectronic Engineering, 2016

Comments (0)

Please log in or register to comment.
Log in