Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Optofluidics, Microfluidics and Nanofluidics

formerly Optofluidics

Ed. by Sada, Cinzia

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2300-7435
See all formats and pricing
More options …

T-junction droplet generator realised in lithium niobate crystals by laser ablation

G. Pozza / S. Kroesen
  • Nonlinear Photonics Group, Institute of Applied Physics, University of Münster Corrensstrasse 2/4, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. Bettella / A. Zaltron
  • Corresponding author
  • Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy and Nonlinear Photonics Group, Institute of Applied Physics, University of Münster Corrensstrasse 2/4, 48149 Münster, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Esseling
  • Nonlinear Photonics Group, Institute of Applied Physics, University of Münster Corrensstrasse 2/4, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ G. Mistura / P. Sartori / E. Chiarello / M. Pierno / C. Denz
  • Nonlinear Photonics Group, Institute of Applied Physics, University of Münster Corrensstrasse 2/4, 48149 Münster, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ C. Sada
Published Online: 2014-11-19 | DOI: https://doi.org/10.2478/optof-2014-0003

Abstract

A femtosecond laser at 800 nm was used to create micro-fluidic circuits on lithium niobate (LiNbO3) substrates by means of laser ablation, using different scanning velocities (100-500 μm/s) and laser pulse energies (1-20 μJ). The T-junction geometry was exploited to create on y-cut LiNbO3 crystals a droplet generator, whose microfluidic performance was characterized in a wide range of droplet generation frequencies, from few Hz to about 1 kHz.

This article offers supplementary material which is provided at the end of the article.

Keywords : Microfluidic; lithium niobate; laser ablation; droplet generator; T-junction

References

  • [1] C. Denz, K.-O.Müller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-codedmultiplexing”, IEEE Journal of Selected Topics in Quantum Electronics 4, 1998, 832CrossrefGoogle Scholar

  • [2] S. Breer and K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate”, Applied Physics B 66, 1998, 339Google Scholar

  • [3] Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim and H.-Y. Lee, “Second-harmonic generation in periodically poled lithiumniobate waveguides fabricated by femtosecond laser pulses”, Applied Physics Letters 89, 2006, 171103CrossrefGoogle Scholar

  • [4] M. Carrascosa, M. Cabrera and F. Agulló-López, “Long-Lifetime Photorefractive Holographic Devices via Thermal Fixing Methods”, Infrared Holography for Optical Communications 86, 2003, 91Google Scholar

  • [5] L. Pang, H. M. Chen, L. M. Freeman and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging”, Lab on Chip 12, 2012, 3543Web of ScienceGoogle Scholar

  • [6] D. Psaltis, S. R. Quake and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics”, Nature 442, 2006, 381CrossrefPubMedGoogle Scholar

  • [7] M. L. Y. Sin, J. Gao, J. C. Liao and P. K. Wong, “System Integration - A Major Step toward Lab on a Chip”, Journal of Biological Engineering 5, 2011, 1Google Scholar

  • [8] M. F. Schneider, Z. Guttenberg, S. W. Schneider, K. Sritharan, V. M. Myles, U. Pamukci and A. Wixforth, “An Acoustically Driven Microliter FlowChamber on a Chip (μFCC) for Cell-Cell and Cell- Surface Interaction Studies”, A European Journal of Chemical Physics and Physical Chemistry 9, 2008, 641PubMedWeb of ScienceGoogle Scholar

  • [9] J. Friend and L. Y. Yeo, "Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics", Reviews of Modern Physics 83. 2011, 647Web of ScienceGoogle Scholar

  • [10] H. A. Eggert, F. Y. Kuhnert, and K. Buse, “Trapping of dielectric particles with light-induced space-charge fields”, Applied Physics Letters 90, 2007, 241909CrossrefGoogle Scholar

  • [11] M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers”, Applied Physics B 113, 2013, 191Web of ScienceGoogle Scholar

  • [12] M. Esseling, A. Zaltron, C. Sada and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate”, Applied Physics Letters 103, 2013, 061115CrossrefGoogle Scholar

  • [13] M. Jubera, A. García-Cabañes, J.Olivares, A. Alcazar, and M. Carrascosa, “Particle trapping and structuring on the surface of LiNbO3:Fe optical waveguides using photovoltaic fields”, Optics Letters 39, 2014, 649CrossrefWeb of ScienceGoogle Scholar

  • [14] M. Sridhar, D. K. Maurya, J. R. Friend and L. Y. Yeo, “Focused ion beam milling of microchannels in lithiumniobate”, Biomicrofluidics 6, 2012, 1Web of ScienceGoogle Scholar

  • [15] M. Chauvet, L. Fares and F. Devaux, “Self-trapped beams for fabrication of optofluidic chips”, Proceedings of SPIE 8434, 2012, 84340Q-1Google Scholar

  • [16] H. Song, D. L. Chen and R. F. Ismagilov, “Reactions in Droplets in Microfluidic Channels”, Angewandte Chemie International Edition 45, 2006, 7336CrossrefGoogle Scholar

  • [17] K. Jensen and A. Lee, “The science and applications of droplets in microfluidic devices”, Lab on Chip 4, 2004, 31NGoogle Scholar

  • [18] V. Chokkalingam, B. Weidenhof, M. Krämer, W. F. Maier, S. Herminghaus and R. Seemann, “Optimized droplet-based microfluidics scheme for sol-gel reactions”, Lab on Chip 10, 2010, 1700PubMedWeb of ScienceGoogle Scholar

  • [19] C. N. Baroud, M. R. de Saint Vincent, and J. P. Delville, "An optical toolbox for total control of droplet microfluidics," Lab on Chip 7, 2007, 1029PubMedWeb of ScienceGoogle Scholar

  • [20] J.C Baret, V.Taly, M. Ryckelynck, C. A. Merten, A.D. Griflths, “Droplets and emulsions: very high-throughput screening in biology”, Medicine Science 25, 2009, 627Google Scholar

  • [21] E. Piccin, D. Ferraro, P. Sartori, E. Chiarello, M. Pierno and G. Mistura, “Generation of water-in-oil and oil-in-water microdroplets in polyester-toner microfluidic devices”, Sensors and Actuators B 196, 2014, 525Web of ScienceGoogle Scholar

  • [22] P.Watts and S. J. Haswell, “The application of micro reactors for organic synthesis”, Chemical Society Reviews 34, 2005, 235PubMedCrossrefGoogle Scholar

  • [23] V. Noireaux and A. Libchaber , “A vesicle bioreactor as a step toward an artificial cell assembly”, Proceeding of National Academy of Sciences U. S. A. 101, 2004, 17669Google Scholar

  • [24] M. S. Long, C. D. Jones, M. R. Helfrich, L. K. Mangeney-Slavin, and C. D. Keating, “Dynamic microcompartmentation in synthetic cells” Proceeding of National Academy of Sciences U. S. A. 102, 2005, 5920Google Scholar

  • [25] H. J. Choi and C. D. Montemagno, “Biosynthesis within a bubble architecture”, Nanotechnology 17, 2006, 2198CrossrefGoogle Scholar

  • [26] A. Gupta and R. Kumar, “Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction”, Microfluidics and Nanofluidics 8, 2010, 799CrossrefWeb of ScienceGoogle Scholar

  • [27] P. Garstecki, M. J. Fuerstman, H. A. Stone and G. M. Whitesides,“ Formation of droplets and bubbles in a microfluidic T-junctionscaling and mechanism of break-up”, Lab on Chip 6, 2006, 437Google Scholar

  • [28] N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, M.-P. Bernal,“High aspect ratio lithiumniobate ridge waveguides fabricated by optical grade dicing” Journal of Physics D: Applied Physics 44, 2011, 305101Google Scholar

  • [29] H. Hu, R. Ricken, W. Sohler and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching”, IEEE Photonics Techology Letters 19, 2007, 417Google Scholar

  • [30] P. Sivarajah, C. A. Werley, B. K. Ofori-Okai, K. A. Nelson, “Chemically assisted femtosecond laser machining for applications in LiNbO3 and LiTaO3”, Applied Physics A, 2013, 112Web of ScienceGoogle Scholar

  • [31] J-W. Lee, Y.-K. Cho, M.-W. Cho, G.-H. Kim and T.-J. Je, “Optical transmittance recovery of powder blasted micro fluidic channels on fused silica glass using MR polishing”, International Journal of Precision Engeneering and Manufacturing 13, 2012, 1925Google Scholar

  • [32] R. Osellame H. J. W. M. Hoekstra, G. Cerullo and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips”, Laser Photonics Reviews 5, 2011, 442Web of ScienceGoogle Scholar

  • [33] V. Maselli, J. R. Grenier, S. Ho and P.R. Herman, “Femtosecond laser writtien optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel”, Optic Express 17, 2009, 11719CrossrefGoogle Scholar

  • [34] R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics”, Report on Progress in Physics 75, 2012, 016601Google Scholar

  • [35] C.N. Baroud, F. Gallaire and R. Dangla, “Dynamics of microfluidic droplets” Lab on Chip 10, 2010, 2032PubMedGoogle Scholar

  • [36] J.H. Xu, S. W. Li, J. Tan, Y. J. Wang, and G. S. Luo, “Controllable Preparation of Monodisperse O/W and W/O Emulsions in the Same Microfluidic Device, Langmuir 22, 2006, 7943PubMedCrossrefGoogle Scholar

  • [37] J.H. Xu, S. W. Li, J. Tan and G. S. Luo, “Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping”, Microfluidics Nanofluidics 5, 2008, 711Web of ScienceGoogle Scholar

  • [38] V. Steijn, C. R. Kleijn and M. T. Kreutzer, “Predictive model for the size of bubbles and droplets created in microfluidic Tjunctions” Lab on Chip 10, 2010, 2513PubMedWeb of ScienceGoogle Scholar

  • [39] Bureau International des Poids et Mesures, Evaluation of measurement data - Guide to the expression of uncertainty in measurement, (2005)Google Scholar

  • [40] G. F. Christopher, N. N. Noharuddin, J. A. Taylor and S. L. Anna, “Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions”, Physical ReviewE 78, 2008, 036317-1 Google Scholar

About the article

Received: 2014-07-25

Accepted: 2014-09-24

Published Online: 2014-11-19

Published in Print: 2014-01-01


Citation Information: Optofluidics, Microfluidics and Nanofluidics, ISSN (Online) 2300-7435, DOI: https://doi.org/10.2478/optof-2014-0003.

Export Citation

© 2014. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Supplementary Article Materials

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Simone Sanna and Wolf Gero Schmidt
Journal of Physics: Condensed Matter, 2017, Volume 29, Number 41, Page 413001
[2]
Giacomo Bettella, Gianluca Pozza, Sebastian Kroesen, Riccardo Zamboni, Enrico Baggio, Carlo Montevecchi, Annamaria Zaltron, Ludovic Gauthier-Manuel, Giampaolo Mistura, Claudio Furlan, Mathieu Chauvet, Cornelia Denz, and Cinzia Sada
Micromachines, 2017, Volume 8, Number 6, Page 185

Comments (0)

Please log in or register to comment.
Log in