Jump to ContentJump to Main Navigation
Show Summary Details

Optofluidics, Microfluidics and Nanofluidics

formerly Optofluidics

Ed. by Sada, Cinzia

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2300-7435
See all formats and pricing




Chitosan microgels obtained by on-chip crosslinking reaction employing a microfluidic device

Vanessa Zamora-Mora
  • Institute of Polymer Science and Technology, The Spanish National Research Council (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
  • Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
/ Diego Velasco
  • Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
  • Department of Bioengineering, Universidad Carlos III de Madrid, Spain. Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain
/ Rebeca Hernández
  • Institute of Polymer Science and Technology, The Spanish National Research Council (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
  • :
/ Carmen Mijangos
  • Institute of Polymer Science and Technology, The Spanish National Research Council (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
  • Department of Chemistry, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
Published Online: 2014-12-18 | DOI: https://doi.org/10.2478/optof-2014-0004

Abstract

In the present work, we report on the preparation of microgels of chitosan crosslinked with sodium tripolyphosphate (TPP) employing the microfluidics technique (MF). To achieve this, several flow focusing geometries were designed and tested. As a first step, a two-inlet flow focusing geometry was employed to emulsify chitosan and the crosslinking reaction was carried out offchip. This procedure did not allow separating the resulting chitosan microgels due to an incomplete crosslinking reaction. A crosslinking reaction on-chip was studied as an alternative. A four-inlet flow focusing geometrywas designed in which three dispersed phases, chitosan 0.25% (w/v), TPP 0.05% (w/v) and acetic acid 1% (v/v) and an continuous phase mineral oil + Span 80 (3% w/v) were employed. The flow rates for the continuous phase were varied from 6.7 to 11.7 μL/min and chitosan microgels were successfully obtained with average diameters from 68 to 42 μm. The average size of the microgels outside the MF device decreased up to ~21% with respect to their size inside the MF device due to partial expulsion of water from the microgels when complete gelation occurred.

References

  • [1] Park, C. J.;Gabrielson, N. P.; Pack, D.W.; Jamison, R. D.;Wagoner Johnson, A. J.; Biomaterials 2009, 30, 436-444. [PubMed]

  • [2] Park, S.; Bhang, S. H.; La, W. G.; Seo, J.; Kim, B. S.; Char, K.; Biomaterials 2012, 33, 5468-5477.

  • [3] Goycoolea, F. M.; Lollo, G.; Remuńán-López, C.; Quaglia, F.; Alonso, M. J.; Biomacromolecules 2009, 10, 1736-1743. [PubMed]

  • [4] Bodnar, M.; Hartmann, J. F.; Borbely, J.; Biomacromolecules 2005, 6, 2521-2527. [PubMed]

  • [5] Richardson, K. E.; Xue, Z.; Huang, Y.; Seo, Y.; Lapitsky, Y.; Carbohydrate Polymers 2013, 93, 709-717.

  • [6] Calvo, P.; Remuńán-López, C.; Vila-Jato, J. L.; Alonso, M. J.; Journal of Applied Polymer Science 1997, 63, 125-132.

  • [7] Zamora-Mora, V.; Fernández-Gutiérrez, M.; Román, J. S.; Goya, G.; Hernández, R.; Mijangos, C.; Carbohydrate Polymers 2014, 102, 691-698.

  • [8] van der Lubben, I. M.; Verhoef, J. C.; van Aelst, A. C.; Borchard, G.; Junginger, H. E.; Biomaterials 2001, 22, 687-694.

  • [9] Xu, Q.; Hashimoto, M.; Dang, T. T.; Hoare, T.; Kohane, D. S.; Whitesides, G. M.; Langer, R.; Anderson, D. G.; Small 2009, 5, 1575-1581. [PubMed]

  • [10] Tumarkin, E.; Kumacheva, E.; Chemical Society Reviews 2009, 38, 2161-2168.

  • [11] Zhao, C.-X. Advanced Drug Delivery Reviews 2013, 65, 1420- 1446.

  • [12] Zamora-Mora, V.; Velasco, D.; Hernández, R.; Mijangos, C.; Kumacheva, E.; Carbohydrate Polymers 2014, 111, 348-355.

  • [13] Yang, C.-H.; Huang, K.-S.; Lin, P.-W.; Lin, Y.-C.; Sensors and Actuators B: Chemical 2007, 124, 510-516.

  • [14] Yang, C.-H.; Lin, Y.-S.; Huang, K.-S.; Huang, Y.-C.; Wang, E.-C.; Jhong, J.-Y.; Kuo, C.-Y.; Lab on a Chip 2009, 9, 145-150. [Crossref]

  • [15] Xu, J.-H.; Zhao, H.; Lan, W.-J.; Luo, G.-S.; Advanced Healthcare Materials 2012, 1, 106-111.

  • [16] Choi, C.-H.; Jung, J.-H.; Rhee, Y.; Kim, D.-P.; Shim, S.-E.; Lee, C.- S.; Biomedical Microdevices 2007, 9, 855-862. [PubMed]

  • [17] Lee, H. Y.; Chan, L. W.; Heng, P. W. S.; Journal of Microencapsulation 2005, 22, 275-280. [PubMed]

  • [18] Bala, I.; Hariharan, S.; Kumar, M. N. V. R.; Critical Reviews in Therapeutic Drug Carrier Systems 2004, 21, 387-422. [PubMed]

  • [19] Chen, S.; Zhang, H.; Shi, X.;Wu, H.; Hanagata, N.; Lab on a Chip 2014, 14, 1842-1849. [Crossref]

  • [20] Luo, G.; Du, L.; Wang, Y.; Lu, Y.; Xu, J.; Particuology 2011, 9, 545- 558.

  • [21] Wallraff, G. M.; Hinsberg, W. D.; Chemical Reviews 1999, 99, 1801-1822.

  • [22] Nie, Z.; Seo, M.; Xu, S.; Lewis, P. C.; Mok, M.; Kumacheva, E.; Whitesides, G. M.; Garstecki, P.; Stone, H. A.; Microfluidics and Nanofluidics 2008, 5, 585-594.

  • [23] Song, H.; Bringer, M. R.; Tice, J. D.; Gerdts, C. J.; Ismagilov, R. F.; Applied Physics Letters 2003, 83, 4664-4666.


Received: 2014-06-30

Accepted: 2014-09-19

Published Online: 2014-12-18


Citation Information: Optofluidics, Microfluidics and Nanofluidics. Volume 1, Issue 1, ISSN (Online) 2300-7435, DOI: https://doi.org/10.2478/optof-2014-0004, December 2014

© 2014 Vanessa Zamora-Mora et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.