Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Optofluidics, Microfluidics and Nanofluidics

formerly Optofluidics

Ed. by Sada, Cinzia

1 Issue per year

Open Access
See all formats and pricing
More options …

Birefringence improvement in azopolymer doped with MFI zeolite nanoparticles

Dimana Nazarova
  • Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl.109, 1113 Sofia, Bulgaria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lian Nedelchev
  • Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl.109, 1113 Sofia, Bulgaria and College of Telecommunications and Post, 1 Acad. St. Mladenov Str., 1700 Sofia, Bulgaria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Svetlana Mintova
  • Laboratoire Catalyse & Spectrochimie, University of Caen, 6, Boulevard du Maréchal Juin, 14050 Caen Cedex, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-11-19 | DOI: https://doi.org/10.2478/optof-2014-0005


Hybrid organic/inorganic materials based on combination of polymers and inorganic nanoparticles (NP) attract considerable attention due to their advantageous electrical, optical, or mechanical properties. Recently it was reported that doping photopolymers with nanoparticles allows to achieve near 100% net diffraction efficiency in case of conventional holographic recording. Thus, we have synthesized novel organic/inorganic composite materials by incorporating MFI (Mordenite Framework Inverted) type zeolite nanoparticles in an amorphous side-chain azopolymer. A considerable improvement of the photoresponse in thin films of these composite materials has been observed compared to the non-doped samples - nearly 25% increase of the saturated value of the birefringence.Moreover the photoinduced birefringence is stable in time which allows these materials to be used as media for diffractive optical elements with high efficiency and unique polarization properties.

Keywords : Azobenzene polymer; MFI zeolite nanoparticles; Nanocomposite materials; Photoinduced birefringence; Polarimetric measurement


  • [1] T. Todorov, L. Nikolova and N. Tomova, Polarization Holography 1. A new high-eflciency organic material with reversible photoinduced birefringence, Appl. Opt. 23, 1984, 4309.PubMedCrossrefGoogle Scholar

  • [2] Nikolova L., Ramanujam P. S., Polarization Holography, Cambridge University Press, Cambridge, 2009Google Scholar

  • [3] M. Eich and J. H. Wendorff, Erasable holograms in polymeric liquid-crystals, Makromol. Chem. - Rapid Comm. 8, 1987, 467.Google Scholar

  • [4] A. Natansohn, P. Rochon, J.Gosselin and S.Xie, Azo polymers for reversible optical storage. 1. Poly[4’-[[2- (acryloyloxy)ethyl]ethylamino]-4-nitroazobenzene], Macromolecules 25, 1992, 2268.CrossrefGoogle Scholar

  • [5] D. Y. Kim, L. Li, X. L. Jiang, V. Shivshankar, J. Kumar and S. K. Tripathy, Polarized laser induced holographic surface relief gratings on polymer films, Macromolecules 28, 1995, 8835.CrossrefGoogle Scholar

  • [6] N. K. Viswanathan, D. Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson and S. K. Tripathy, Surface relief structures on azo polymer films, J. Mat. Chem. 9, 1999, 1941.CrossrefGoogle Scholar

  • [7] T. Fukuda, K. Sumaru, T. Kimura and H. Matsuda, Photofabrication of surface relief structure - mechanism and application, J. Photoch. Photobio. A 145, 2001, 35.Google Scholar

  • [8] J. Zhou, J. Yang, Y. Ke, J. Shen, Q. Zhang and K.Wang, Fabrication of polarization grating and surface relief grating in crosslinked and non-crosslinking azopolymer by polarization holography method, Opt. Mat. 30, 2008, 1787.CrossrefGoogle Scholar

  • [9] L. Nikolova, L. Nedelchev, T. Todorov, Tz. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam and S. Hvilsted, Self-induced light polarization rotation in azobenzene-containing polymers, Appl. Phys. Lett. 77, 2000, 657.Google Scholar

  • [10] G. Iftime, F. L. Labarthet, A. Natansohn and P. Rochon, Control of chirality of an azobenzene liquid crystalline polymer with circularly polarized light, J. Amer. Chem. Soc. 122, 2000, 12646.Google Scholar

  • [11] K. G. Yager and C. J. Barrett, Novel photo-switching using azobenzene functional materials, J. Photochem. Photobiol. A - Chem. 182, 2006, 250.Google Scholar

  • [12] Z. Zheng, L. Wang, Z. Su, J. Xu, J. Yang and Q. Zhang, Photoinduced chirality in achiral liquid crystalline polymethacrylates containing bisazobenzene and azobenzene chromophores, J. Photoch. Photobio. A 185, 2007, 338.Web of ScienceGoogle Scholar

  • [13] J. del Barrio, R. M. Tejedor and L. Oriol, Thermal and light control of the chiral order of azopolymers, Eur. Polym. J. 48, 2012, 384.Web of ScienceGoogle Scholar

  • [14] L. Nikolova, T. Todorov, M. Ivanov, F. Andruzzi, S. Hvilsted and P. S. Ramanujam, Polarization holographic gratings in side-chain azobenzene polyesters with linear and circular photoanisotropy, Appl. Opt. 35, 1996, 3835.PubMedCrossrefGoogle Scholar

  • [15] L. Nedelchev, T. Todorov, L. Nikolova, Tz. Petrova, N. Tomova and V. Dragostinova, Characteristics of high-eflcient polarization holographic gratings, Proc. SPIE 4397, 2001, 338.Google Scholar

  • [16] P. S. Ramanujam, C. Dam-Hansen, R. H. Berg, S. Hvilsted and L. Nikolova, Polarisation-sensitive optical elements in azobenzene polyesters and peptides, Opt. Las. Eng. 44, 2006, 912.CrossrefGoogle Scholar

  • [17] S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler and P. S. Ramanujam, Novel side-chain liquid-crystalline polyester architecture for reversible optical storage,Macromolecules 28, 1995, 2172.CrossrefGoogle Scholar

  • [18] P. H. Rasmussen, P. S. Ramanujam, S. Hvilsted and R. H. Berg, A remarkably eflcient azobenzene peptide for holographic information storage, J. Amer. Chem. Soc. 121, 1999, 4738.Google Scholar

  • [19] L. Nedelchev, A. S. Matharu, S. Hvilsted and P. S. Ramanujam, Photoinduced anisotropy in a family of amorphous azobenzene polyesters for optical storage, Appl. Opt. 42, 2003, 5918.CrossrefGoogle Scholar

  • [20] N. C. R. Holme, S. Hvilsted, E. Lőrincz, A.Matharu, L. Nedelchev, L. Nikolova and P. S. Ramanujam, Azobenzene Polyesters for Polarization Holographic Storage: Part I Materials and Characterization, in: H. Nalwa (Ed.), Handbook of Organic Electronics and Photonics, Amer. Sci. Publ., Valencia CA, 2008, pp. 184-211.Google Scholar

  • [21] H. Audorff, K. Kreger, R. Walker, D. Haarer, L. Kador and H. W. Schmidt, Holographic Gratings and Data Storage in Azobenzene-Containing Block Copolymers and Molecular Glasses, Adv. Polym. Sci. 228, 2010, 59.Google Scholar

  • [22] M. Ivanov, D. Ilieva, G. Minchev, Ts. Petrova, V. Dragostinova, T. Todorov and L. Nikolova, Temperature-dependent light intensity controlled optical switching in azobenzene polymers, Appl. Phys. Lett. 86, 2005, 181902.CrossrefGoogle Scholar

  • [23] N. Suzuki and Y. Tomita, Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction eflciency near 100%, Appl. Opt. 43, 2004, 2125.CrossrefPubMedGoogle Scholar

  • [24] Y. Tomita, N. Suzuki and K. Chikama, Holographic manipulation of nanoparticle distribution morphology in nanoparticledispersed photopolymers, Opt. Lett. 30, 2005, 839.PubMedCrossrefGoogle Scholar

  • [25] E. Leite, I. Naydenova, S. Mintova, L. Leclercq and V. Toal, Photopolymerizable nanocomposites for holographic recording and sensor application, Appl. Opt. 49, 2010, 3652.CrossrefPubMedGoogle Scholar

  • [26] S. M. Shah, C. Martini, J. Ackermann and F. Fages, Photoswitching in azobenzene self-assembled monolayers capped on zinc oxide: Nanodots vs nanorods, J. Colloid Interface Sci. 367, 2012, 109.Google Scholar

  • [27] S. Mintova, N. H. Olson, J. Senker and T. Bein, Mechanism of the Transformation of Silica Precursor Solutions into Si-MFI Zeolite, Angew. Chem. 41, 2002, 2558.CrossrefGoogle Scholar

  • [28] T. Babeva, R. Todorov, S. Mintova, T. Yovcheva, I. Naydenova and V. Toal, Optical properties of silica MFI doped acrylamidebased photopolymer, J. Opt. A: Pure Appl. Opt. 11, 2009, 024015.CrossrefGoogle Scholar

  • [29] T. Babeva, H. Awala, M. Vasileva, J. El Fallah, K. Lazarova and S. Mintova, Pure silica MFI zeolite films as antireflection coatings, Bulg. Chem. Commun. 45B, 2013, 18.Google Scholar

  • [30] G. Martinez-Ponce, Ts. Petrova, N. Tomova, V. Dragostinova, T. Todorov and L. Nikolova, Investigations on photoinduced processes in a series of azobenzene-containing side-chain polymers, J. Opt. A: Pure Appl. Opt. 6, 2004, 324.CrossrefGoogle Scholar

  • [31] L. Nedelchev, D. Nazarova, V. Dragostinova and D. Karashanova, Increase of photoinduced birefringence in a new type of anisotropic nanocomposite: azopolymer doped with ZnO nanoparticles, Opt. Lett. 37, 2012, 2676.CrossrefGoogle Scholar

  • [32] L. Nedelchev, D. Nazarova and V. Dragostinova, Photosensitive organic/inorganic azopolymer based nanocomposite materials with enhanced photoinduced birefringence, J. Photochem. Photobiol. A: Chem. 261, 2013, 26.Web of ScienceGoogle Scholar

  • [33] D. Nazarova, L. Nedelchev, P. Sharlandjiev and V. Dragostinova, Anisotropic hybrid organic/inorganic (azopolymer/SiO2 NPs) materials with enhanced photoinduced birefringence, Appl. Opt. 52, 2013, E28.CrossrefGoogle Scholar

  • [34] J. Zhou, J. Yang, Y. Sun, D. Zhang, J. Shen, Q. Zhang, K. Wang, Effect of silver nanoparticles on photo-induced reorientation of azo groups in polymer films, Thin Solid Films 515, 2007, 7242.Web of ScienceGoogle Scholar

  • [35] K. Bhattacharya, P. C. Naha, I. Naydenova, S. Mintova and H. J. Byrne, Reactive oxygen species mediated DNA damage in human lung alveolar epithelial (A549) cells from exposure to noncytotoxic MFI-type zeolite nanoparticles, Toxicology Letters 215, 2012, 151. Web of ScienceGoogle Scholar

About the article

Received: 2014-06-30

Accepted: 2014-09-17

Published Online: 2014-11-19

Published in Print: 2014-01-01

Citation Information: Optofluidics, Microfluidics and Nanofluidics, Volume 1, Issue 1, ISSN (Online) 2300-7435, DOI: https://doi.org/10.2478/optof-2014-0005.

Export Citation

© 2014. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

L. Nedelchev, D. Ivanov, N. Berberova, V. Strijkova, and D. Nazarova
Optical and Quantum Electronics, 2018, Volume 50, Number 5
Nataliya Berberova, Dimana Nazarova, Lian Nedelchev, Blaga Blagoeva, Desislava Kostadinova, Vera Marinova, and Elena Stoykova
Journal of Physics: Conference Series, 2016, Volume 700, Page 012032

Comments (0)

Please log in or register to comment.
Log in