Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Optofluidics, Microfluidics and Nanofluidics

formerly Optofluidics

Ed. by Sada, Cinzia

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2300-7435
See all formats and pricing
More options …

Monitoring the diffusion behavior of Na,K-ATPase by fluorescence correlation spectroscopy (FCS) upon fluorescence labelling with eGFP or Dreiklang

Cornelia Junghans
  • Corresponding author
  • Technical University of Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Franz-Josef Schmitt
  • Corresponding author
  • Technical University of Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladana Vukojević
  • Corresponding author
  • Karolinska Institutet, Department of Clinical Neuroscience, Center for Molecular Medicine CMM L8:01, 17176 Stockholm, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Friedrich
  • Corresponding author
  • Technical University of Berlin, Institute of Chemistry PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-31 | DOI: https://doi.org/10.1515/optof-2015-0001

Abstract

Measurement of lateral mobility of membraneembedded proteins in living cells with high spatial and temporal precision is a challenging task of optofluidics. Biological membranes are complex structures, whose physico-chemical properties depend on the local lipid composition, cholesterol content and the presence of integral or peripheral membrane proteins, which may be involved in supramolecular complexes or are linked to cellular matrix proteins or the cytoskeleton. The high proteinto- lipid ratios in biomembranes indicate that membrane proteins are particularly subject to molecular crowding, making it difficult to follow the track of individual molecules carrying a fluorescence label. Novel switchable fluorescence proteins such as Dreiklang [1], are, in principle, promising tools to study the diffusion behavior of individual molecules in situations of molecular crowding due to excellent spectral control of the ON- and OFF-switching process. In this work, we expressed an integral membrane transport protein, the Na,K-ATPase comprising the human α2-subunit carrying an N-terminal eGFP or Dreiklang tag and human β1-subunit, in HEK293T cells and measured autocorrelation curves by fluorescence correlation spectroscopy (FCS). Furthermore,we measured diffusion times and diffusion constants of eGFP and Dreiklang by FCS, first, in aqueous solution after purification of the proteins upon expression in E. coli, and, second, upon expression as soluble proteins in the cytoplasm of HEK293T cells. Our data show that the diffusion behavior of the purified eGFP and Dreiklang in solution as well as the properties of the proteins expressed in the cytoplasm are very similar. However, the autocorrelation curves of eGFP- and Dreiklanglabeled Na,K-ATPase measured in the plasma membrane exhibit marked differences, with the Dreiklang-labeled construct showing shorter diffusion times. This may be related to an additional, as yet unrecognized quenching process that occurs on the same time scale as the diffusion of the labeled complexes through the detection volume (1– 100 ms). Since the origin of this quenching process is currently unclear, care has to be taken when the Dreiklang label is intended to be used in FCS applications.

Keywords: Membrane protein diffusion; solvent viscosity; diffusion constants; lateral mobility; molecular crowding; HEK 293 cells; transient transfection; photoswitchable; fluorescence proteins

References

  • [1] T. Brakemann, A. C. Stiel, G. Weber, M. Andresen, I. Testa, T. Grotjohann, M. Leutenegger, U. Plessmann, H. Urlaub, C. Eggeling, M. C. Wahl, S. W. Hell, S. Jakobs, A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching, Nat. Biotechnol., 29, 2011, 942 CrossrefGoogle Scholar

  • [2] O. Shimomura, F. H. Johnson, Y. and Saiga, Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea, J. Cell. Comp. Physiol., 59, 1962, 223 CrossrefGoogle Scholar

  • [3] S. W. Hell, J. and Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy, Opt. Lett. 19, 1994, 780 CrossrefGoogle Scholar

  • [4] T. A. Klar, S. W. and Hell, Subdiffraction resolution in far-field fluorescence microscopy, Opt. Lett. 24, 1999, 954 CrossrefGoogle Scholar

  • [5] T. A. Klar, S. Jakobs, M. Dyba, A. Egner, S.W. Hell, Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission, Proc. Natl. Acad. Sci. U. S. A., 97, 2000, 8206 CrossrefGoogle Scholar

  • [6] M. J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods 3, 2006, 793 Google Scholar

  • [7] S. T. Hess, T. P. Girirajan, M. D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy, Biophys. J. 91, 2006, 4258 CrossrefGoogle Scholar

  • [8] O. Shimomura, Structure of the chromophore of Aequorea green fluorescent protein, FEBS Letters, 104, 1979, 220 CrossrefGoogle Scholar

  • [9] C. D. Hu, Y. Chinenov, T. K. Kerppola, Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation, Mol. Cell, 9, 2002, 789 CrossrefGoogle Scholar

  • [10] J. D. Pedelacq, S. Cabantous, T. Tran, T. C. Terwilliger, G. S. Waldo, Engineering and characterization of a superfolder green fluorescent protein, Nat. Biotechnol. 24, 2006, 79 CrossrefGoogle Scholar

  • [11] S. Cabantous, T. C. Terwilliger, G. S.Waldo, Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein, Nat. Biotechnol. 23, 2005, 102 CrossrefGoogle Scholar

  • [12] G. S. Baird, D. A. Zacharias, R. Y. Tsien, Circular permutation and receptor insertion within green fluorescent proteins, Proc. Natl. Acad. Sci. U. S. A., 96, 1999, 11241 CrossrefGoogle Scholar

  • [13] J. Nakai, M. Ohkura, K. Imoto, A high signal-to-noise Ca(2+) probe composed of a single green fluorescent protein, Nat. Biotechnol., 19, 2001, 137 CrossrefGoogle Scholar

  • [14] Y. Zhao, Y. Yang, Profiling metabolic states with genetically encoded fluorescent biosensors for NADH, Curr.Opin. Biotechnol., 31, 2015, 86 CrossrefGoogle Scholar

  • [15] D.Magde,W.W. Webb, E. Elson, Thermodynamic Fluctuations in a Reacting System - Measurement by Fluorescence Correlation Spectroscopy, Phys. Rev. Lett., 29, 1972, 705 CrossrefGoogle Scholar

  • [16] S. R. Aragón, R. Pecora, Fluorescence correlation spectroscopy as a probe ofmolecular dynamics, J. Chem. Phys., 64, 1976, 1791 Google Scholar

  • [17] G. Bonnet, O. Krichevsky, A. Libchaber, Kinetics of conformational fluctuations in DNA hairpin-loops, Proc. Natl. Acad. Sci. U.S.A., 95, 1998, 8602 CrossrefGoogle Scholar

  • [18] M. Ehrenberg, R. Rigler, Rotational Brownian motion and fluorescence intensity fluctuations, Chem. Phys., 4, 1974, 390 CrossrefGoogle Scholar

  • [19] U. Haupts, S. Maiti, P. Schwille, W. W. Webb, Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy, Proc. Natl. Acad. Sci. U.S.A., 95, 19098, 13573 Google Scholar

  • [20] P. Kask, P. Piksarv, M. Pooga, Ü. Mets, E. Lippmaa, Separation of the rotational contribution in fluorescence correlation experiments, Biophys. J., 55, 1989, 213 CrossrefGoogle Scholar

  • [21] D.Magde, Chemical kinetics and fluorescence correlation spectroscopy, Quart. Rev. Biophys., 9, 1976, 35 CrossrefGoogle Scholar

  • [22] B. Rauer, E. Neumann, J.Widengren, R. Rigler, Fluorescence correlation spectrometry of the interaction kinetics of tetramethylrhodamin alpha-bungarotoxin with Torpedo californica acetylcholine receptor, Biophys. Chem., 58, 1996, 3 CrossrefGoogle Scholar

  • [23] J. Widengren, Ü. Mets, R. Rigler, Fluorescence correlation spectroscopy of triplet states in solution: a theoretical and experimental study, J. Phys. Chem., 99, 1995, 13368 Google Scholar

  • [24] J. Widengren, R. Rigler, Ü. Mets, Triplet-state monitoring by fluorescence correlation spectroscopy, J. Fluoresc., 4, 1994, 255 CrossrefGoogle Scholar

  • [25] E. Haustein, P. Schwille, Ultrasensitive investigations of biological systems by fluorescence correlation spectroscopy, Methods, 29, 2003, 153 CrossrefGoogle Scholar

  • [26] C. Eggeling, S. Berger, L. Brand, J. R. Fries, J. Schaffer, A. Volkmer, C. A. Seidel, Data registration and selective singlemolecule analysis using multi-parameter fluorescence detection, J. Biotechnol., 86, 2001, 163 Google Scholar

  • [27] B. Lounis, H. A. Bechtel, D. Gerion, P. Alivisatos, W. E. Moerner, Photon antibunching in single CdSe/ZnS quantum dot fluorescence, Chem. Phys. Letters, 329, 2000, 399 Google Scholar

  • [28] S. J. Singer, G. L. Nicolson, The fluid mosaic model of the structure of cell membranes, Science, 175, 1972, 720 Google Scholar

  • [29] A. D. Dupuy, D. M. Engelman, Protein area occupancy at the center of the red blood cell membrane, Proc. Natl. Acad. Sci. U. S. A., 105, 2008, 2848 CrossrefGoogle Scholar

  • [30] E. Zinser, C. D. Sperka-Gottlieb, E. V. Fasch, S. D. Kohlwein, F. Paltauf, F., G. Daum, Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae, J. Bacteriol., 173, 1991, 2026 Google Scholar

  • [31] P. G. Saffman, M. Delbrück, Brownian motion in biological membranes, Proc. Natl. Acad. Sci. U. S. A., 72, 1975, 3111 CrossrefGoogle Scholar

  • [32] Y. Gambin, R. Lopez-Esparza, M. Reffay, E. Sierecki, N. S. Gov, M. Genest, R. S. Hodges, W. Urbach, Lateral mobility of proteins in liquid membranes revisited, Proc. Natl. Acad. Sci. U. S. A., 103, 2006, 2098 CrossrefGoogle Scholar

  • [33] M. Khalid, F. Cornelius, R. J. Clarke, Dual mechanisms of allosteric acceleration of the Na(+),K(+)-ATPase by ATP, Biophys. J., 98, 2010, 2290 CrossrefGoogle Scholar

  • [34] M. De Fusco, R. Marconi, L. Silvestri, L. Atorino, L. Rampoldi, L. Morgante, A. Ballabio, P. Aridon, G. Casari, Haploinsuflciency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2, Nat. Genet. 33, 2003, 192 Google Scholar

  • [35] J. P. Morth, H. Poulsen, M. S. Toustrup-Jensen, V. R. Schack, J. Egebjerg, J. P. Andersen, B. Vilsen, P. Nissen, The structure of the Na+,K+-ATPase and mapping of isoform differences and disease-related mutations, Philos. Trans. R. Soc. Lond. B Biol. Sci., 364, 2009, 217 Google Scholar

  • [36] N. N. Tavraz, K. L. Dürr, J. B. Koenderink, T. Freilinger, E. Bamberg, M. Dichgans, T. Friedrich, Impaired plasma membrane targeting or protein stability by certain ATP1A2 mutations identified in sporadic or familial hemiplegic migraine, Channels (Austin), 3, 2009, 82 Google Scholar

  • [37] N. N. Tavraz, T. Friedrich, K. L. Dürr, J. B. Koenderink, E. Bamberg, T. Freilinger, M. Dichgans, Diverse functional consequences of mutations in the Na+/K+-ATPase alpha2-subunit causing familial hemiplegic migraine type, J. Biol. Chem., 283, 2008, 31097 Google Scholar

  • [38] D. P. Calderon, R. Fremont, F. Kraenzlin, K. Khodakhah, The neural substrates of rapid-onset Dystonia-Parkinsonism, Nat. Neurosci., 14, 2011, 357 Google Scholar

  • [39] P. de Carvalho Aguiar, K. J. Sweadner, J. T. Penniston, J. Zaremba, L. Liu, M. Caton, G. Linazasoro, M. Borg, M. A. Tijssen, S. B. Bressman, W. B. Dobyns, A. Brashear, L. J. Ozelius, Mutations in the Na+/K+ -ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism, Neuron, 43, 2004, 169 Google Scholar

  • [40] E. L. Heinzen, A. Arzimanoglou, A. Brashear, S. J. Clapcote, F. Gurrieri, D. B. Goldstein, S. H. Johannesson, M. A. Mikati, B. Neville, S. Nicole, L. J. Ozelius, H. Poulsen, T. Schyns, K. J. Sweadner, A. van den Maagdenberg, B. Vilsen, Distinct neurological disorders with ATP1A3 mutations, Lancet Neurol. 13, 2014, 503 Google Scholar

  • [41] M. K. Demos, C. D. van Karnebeek, C. J. Ross, S. Adam, Y. Shen, S. H. Zhan, C. Shyr, G. Horvath, M. Suri, A. Fryer, S. J. Jones, J. M. Friedman, A novel recurrent mutation in ATP1A3 causes CAPOS syndrome, Orphanet J. Rare Dis., 9, 2014, 15 Google Scholar

  • [42] X. Liu, Z. Spicarova, S. Rydholm, J. Li, H. Brismar, A. Aperia, Ankyrin B modulates the function of Na,K-ATPase/inositol 1,4,5- trisphosphate receptor signaling microdomain, J. Biol. Chem., 283, 2008, 11461 Google Scholar

  • [43] P. J. Mohler, J. J. Schott, A. O. Gramolini, K. W. Dilly, S. Guatimosim, W. H. duBell, L, S. Song, K. Haurogne, F. Kyndt, M. E. Ali, T. B. Rogers, W. J. Lederer, D. Escande, H. Le Marec, V. Bennett, Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death, Nature, 421, 2003, 634 Google Scholar

  • [44] V. Vukojevic, M. Heidkamp, Y. Ming, B. Johansson, L. Terenius, R. Rigler, Quantitative single-molecule imaging by confocal laser scanning microscopy, Proc. Natl. Acad. Sci. U. S. A., 105, 2008, 18176 CrossrefGoogle Scholar

  • [45] V. Vukojevic, Y. Ming, C. D’Addario, M. Hansen, U. Langel, R. Schulz, B. Johansson, R. Rigler, L. Terenius, Mu-opioid receptor activation in live cells, FASEB J., 22, 2008, 3537 CrossrefGoogle Scholar

  • [46] J. R. Lakowicz, Principles of fluorescence spectroscopy, 3rd ed. , 2006, Springer, New York Google Scholar

  • [47] D. Magde, E. L. Elson, W. W. Webb, Fluorescence correlation spectroscopy. II. An experimental realization, Biopolymers, 13, 1974, 29 CrossrefGoogle Scholar

  • [48] G.Majer, J. P. Melchior, Characterization of the fluorescence correlation spectroscopy (FCS) standard rhodamine 6G and calibration of its diffusion coeflcient in aqueous solutions, J. Chem. Phys., 140, 2014, 094201 Google Scholar

  • [49] R. Rigler, P. Grasselli, M. Ehrenberg, Fluorescence Correlation Spectroscopy and Application to the Study of Brownian Motion of Biopolymers, Phys. Scr., 19, 1979, 486 Google Scholar

  • [50] P. Kapusta, Absolute Diffusion Coeflcients: Compilation of Reference Data for FCS Calibration, Picoquant GmbH, 2010, http://www.picoquant.com/images/uploads/page/files/ 7353/appnote_diffusioncoeflcients.pdf, accessed on June 12, 2015. Google Scholar

  • [51] J. Widengren, Ü. Mets, R. Rigler, Photodynamic properties of green fluorescent proteins investigated by fluorescence correlation spectroscopy, Chem. Phys., 250, 1999, 171 Google Scholar

  • [52] R.Swaminathan, C. P. Hoang, A. S. Verkman, Photobleaching recovery and anisotropy decay of green fluorescent protein GFPS65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion, Biophys. J., 72, 1997, 1900 Google Scholar

  • [53] M. A. Hink, R. A. Griep, J. W. Borst, A. van Hoek, M. H. Eppink, A. Schots, A. J. Visser, Structural dynamics of green fluorescent protein alone and fused with a single chain Fv protein, J. Biol. Chem. 275, 2000, 17556 Google Scholar

  • [54] Glycerine Producers’ Association, Physical Properties of Glycerine and Its Solutions, New York, 1963, http://www.aciscience.org/docs/physical_properties_of_ glycerine_and_its_solutions.pdf. Google Scholar

  • [55] D. A. Zacharias, J. D. Violin, A. C. Newton, R. Y. Tsien, Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells, Science, 296, 2002, 913 Google Scholar

  • [56] M. S. Paller, Lateral mobility of Na,K-ATPase and membrane lipids in renal cells. Importance of cytoskeletal integrity, J. Membr. Biol. 142, 1994, 127 Google Scholar

  • [57] K. Weiss, A. Neef, Q. Van, S. Kramer, I. Gregor, J. Enderlein, Quantifying the diffusion of membrane proteins and peptides in black lipid membranes with 2-focus fluorescence correlation spectroscopy, Biophys. J., 105, 2013, 455 Google Scholar

  • [58] S. Ramadurai, A. Holt, V. Krasnikov, G. van den Bogaart, J. A. Killian, B. Poolman, Lateral diffusion of membrane proteins, J. Am. Chem. Soc. 131, 2009, 12650 Google Scholar

  • [59] A. Naji, A. J. Levine, P. A. Pincus, Corrections to the Saffman- Delbruck mobility for membrane bound proteins, Biophys. J., 93, 2007, L49 Google Scholar

  • [60] T. Shinoda, H. Ogawa, F. Cornelius, C. Toyoshima, Crystal structure of the sodium-potassiumpump at 2.4 Å resolution, Nature, 459, 2009, 446 Google Scholar

  • [61] P. Cicuta, S. L. Keller, S. L. Veatch, Diffusion of liquid domains in lipid bilayer membranes, J. Phys. Chem. B, 111, 2007, 3328 Google Scholar

  • [62] W. L. C. Vaz, F. Goodsaid-Zalduondo, K. Jacobson, Lateral diffusion of lipids and proteins in bilayer membranes, FEBS Letters, 174, 1984, 199 Google Scholar

  • [63] C. Jordan, B. Puschel, R. Koob, D. Drenckhahn, Identification of a binding motif for ankyrin on the alpha-subunit of Na+,K+- ATPase, J. Biol. Chem., 270, 1995, 29971 Google Scholar

  • [64] T. Cai, H. Wang, Y. Chen, L. Liu, W. T. Gunning, L. E. Quintas, Z. J. Xie, Regulation of caveolin-1 membrane traflcking by the Na/KATPase, J. Cell Biol. 182, 2008, 1153 Google Scholar

  • [65] T. Friedrich, E. Bamberg, G. Nagel, Na+,K+-ATPase pump currents in giant excised patches activated by an ATP concentration jump, Biophys. J., 71, 1996, 2486 Google Scholar

  • [66] J. Kockskämper, G. Gisselmann, H. G. Glitsch, Comparison of ouabain-sensitive and -insensitive Na/K pumps in HEK293 cells, Biochim. Biophys. Acta, 1325, 1997, 197 Google Scholar

  • [67] N. A. Jensen, J. G. Danzl, K. I. Willig, F. Lavoie-Cardinal, T. Brakemann, S. W. Hell, S. Jakobs, Coordinate-targeted and coordinate-stochastic super-resolution microscopy with the reversibly switchable fluorescent protein Dreiklang, ChemPhysChem 15, 2014, 756 CrossrefGoogle Scholar

About the article

Received: 2015-10-06

Accepted: 2015-10-20

Published Online: 2015-12-31


Citation Information: Optofluidics, Microfluidics and Nanofluidics, ISSN (Online) 2300-7435, DOI: https://doi.org/10.1515/optof-2015-0001.

Export Citation

© 2015 C. Junghans et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Cornelia Junghans, Vladana Vukojević, Neslihan N. Tavraz, Eugene G. Maksimov, Werner Zuschratter, Franz-Josef Schmitt, and Thomas Friedrich
Biophysical Journal, 2017
[2]
Cornelia Junghans, Franz-Josef Schmitt, Vladana Vukojević, and Thomas Friedrich
Optofluidics, Microfluidics and Nanofluidics, 2016, Volume 3, Number 1

Comments (0)

Please log in or register to comment.
Log in