Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Optofluidics, Microfluidics and Nanofluidics

formerly Optofluidics

Ed. by Sada, Cinzia

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2300-7435
See all formats and pricing
More options …

BANSAI - An optofluidic approach for biomedical analysis

Markus Knoerzer
  • Corresponding author
  • Institute for Optofluidics and Nanophotonics (IONAS), Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany
  • Microplatforms Research Group, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christoph Prokop
  • Corresponding author
  • Institute for Optofluidics and Nanophotonics (IONAS), Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany
  • Microplatforms Research Group, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Graciete M. Rodrigues Ribeiro
  • Corresponding author
  • Zentralinstitut für Laboratoriumsmedizin, Mikrobiologie und Transfusionsmedizin, Städtisches Klinikum Karlsruhe, Moltkestr. 90, 76133 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Horst Mayer
  • Corresponding author
  • Zentralinstitut für Laboratoriumsmedizin, Mikrobiologie und Transfusionsmedizin, Städtisches Klinikum Karlsruhe, Moltkestr. 90, 76133 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jens Brümmer
  • Corresponding author
  • Zentralinstitut für Laboratoriumsmedizin, Mikrobiologie und Transfusionsmedizin, Städtisches Klinikum Karlsruhe, Moltkestr. 90, 76133 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Arnan Mitchell
  • Corresponding author
  • Microplatforms Research Group, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dominik G. Rabus
  • Corresponding author
  • Microplatforms Research Group, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia
  • Bürkert Fluid Control Systems, Christian-Bürkert- Str. 13-17, 74653 Ingelfingen, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christian Karnutsch
  • Corresponding author
  • Institute for Optofluidics and Nanophotonics (IONAS), Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-31 | DOI: https://doi.org/10.1515/optof-2015-0003

Abstract

Lab-on-a-chip based portable blood analysis systems would allow point-of-care measurements, e.g. in an ambulance, or in remote areas with no fast access to medical care. Such a systemwould provide much faster information about the health of a patient. Here,we present a system that is based on absorption spectroscopy and uses an organic laser, which is tunable in the visible range. The feasibility of the system is shown with a table-top setup using laboratory equipment. Measurements of human albumin show linear behaviour in a range from 2.5 g/L to 60 g/L. In a consecutive setup the system is implemented on a microfluidic chip and is capable of measuring simultaneously transmitted and side scattered intensities, even with ambient light present. Air-suspended grating couplers on polymers are shown as the first element of a lab-on-a-chip implementation.

Keywords: optofluidic; microfluidic; biomedical analysis; blood analysis; lab-on-a-chip; point-of-care analysis; organic laser

References

  • [1] T. Woggon, S. Klinkhammer, and U. Lemmer. Compact spectroscopy system based on tunable organic semiconductor lasers. Applied Physics B, 99(1-2):47–51, 2010. ISSN 0946-2171. 10.1007/s00340-010-3953-6. CrossrefGoogle Scholar

  • [2] Peter Atkins and Julio de Paula. Physical Chemistry. W. H. Freeman, Murray Hill, New Jersey, 8th edition, 2006. ISBN 978-0-716-78759-4. Google Scholar

  • [3] International Union of Pure Chemistry and Applied. Compendium of Chemical Terminology - Gold Book. February 2014. URL http://goldbook.iupac.org/. Version 2.3.3. Google Scholar

  • [4] Christian Karnutsch. Low Threshold Organic Thin Film Laser Devices. Cuvillier Verlag, 2007. ISBN 978-3-86-727306-0. Google Scholar

  • [5] Karsten Rebner. Ortsaufgelöste Streulichtspektroskopie an mikrostrukturierten Systemen. PhD-Thesis, Eberhard-Karls- Universität Tübingen, 2010. Google Scholar

  • [6] Dominik G. Rabus. Optofluidics Systems Technology. De Gruyter, Berlin, Boston, 2014. ISBN 978-3-11-035021-0. 10.1515/9783110350210. Google Scholar

  • [7] Polyplastics Co., Ltd. Thermoplastic Olefin Polymer of Amorphous Structure (COC), July 2013. URL http://www.polyplastics. com/en/product/lines/topas/general_e.pdf. Google Scholar

  • [8] VISOLAS GmbH. VISOLAS DO, March 2012. URL http://visolas. de/en/visolas-do/. Google Scholar

  • [9] VISOLAS GmbH. VISOLAS VIS PD Amp, July 2014. URL http://visolas.de/en/photodiodenverstaerkerhigh-speedphotodiode- amplifier/. Google Scholar

  • [10] D. Psaltis, S. R. Quake, and C. Yang. Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 442(7101):381–386, 2006. ISSN 1476-4687. 10.1038/nature05060. Google Scholar

  • [11] C. Monat, P. Domachuk, and B. J. Eggleton. Integrated optofluidics: A new river of light. Nature Photonics, 1(2):106–114, 2007. ISSN 1749-4885. 10.1038/nphoton.2006.96. Web of ScienceCrossrefGoogle Scholar

  • [12] X. Fan and I. M. White. Optofluidic microsystems for chemical and biological analysis. Nature Photonics, 5(10):591–597, 2011. ISSN 1749-4885. 10.1038/nphoton.2011.206. CrossrefWeb of ScienceGoogle Scholar

  • [13] Rebecca J. Jackman, Tamara M. Floyd, Reza Ghodssi, Martin A. Schmidt, and Klavs F. Jensen. Microfluidic systems with online UV detection fabricated in photodefinable epoxy. Journal of Micromechanics and Microengineering, 11(3):263–269, 2001. ISSN 0960-1317. 10.1088/0960-1317/11/3/316. Google Scholar

  • [14] D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets. An out-of-plane grating coupler for eflcient buttcoupling between compact planar waveguides and singlemode fibers. IEEE Journal of Quantum Electronics, 38(7):949– 955, 2002. ISSN 0018-9197. 10.1109/jqe.2002.1017613. CrossrefGoogle Scholar

  • [15] Roman Bruck and Rainer Hainberger. Eflcient coupling of narrow beams into polyimide waveguides by means of grating couplers with high-index grating. Applied Optics, 49(10): 1972–1978, 2010. ISSN 1559-128x. 10.1364/Ao.49.001972. CrossrefWeb of ScienceGoogle Scholar

  • [16] Linghua Wang, Yanlu Li, Marco Garcia Porcel, Diedrik Vermeulen, Xiuyou Han, Jinyan Wang, Xigao Jian, Roel Baets, Mingshan Zhao, and Geert Morthier. A polymer-based surface grating coupler with an embedded Si3N4 layer. Journal of Applied Physics, 111(11):114507, 2012. ISSN 0021-8979. 10.1063/1.4724335. CrossrefGoogle Scholar

  • [17] Qifa Liu, Zheng Shi, Gangyi Zhu, Wei Wang, Zhenhai Wang, and Yongjin Wang. Freestanding GaN grating couplers at visible wavelengths. Journal of Optics, 17(4):045607, 2015. ISSN 2040-8978. 10.1088/2040-8978/17/4/045607. CrossrefWeb of ScienceGoogle Scholar

  • [18] M. Loncar, T. Doll, J. Vuckovic, and A. Scherer. Design and fabrication of silicon photonic crystal optical waveguides. Journal of Lightwave Technology, 18(10):1402–1411, 2000. ISSN 0733-8724. CrossrefGoogle Scholar

  • [19] Guangyuan Si, Ee Jin Teo, Andrew A. Bettiol, Jinghua Teng, and Aaron J. Danner. Suspended slab and photonic crystal waveguides in lithium niobate. Journal of Vacuum Science & Technology B, 28(2):316–320, 2010. ISSN 1071-1023. 10.1116/1.3327925. Google Scholar

  • [20] Choon-Gi Choi, Young-Tak Han, Jin Tae Kim, and Helmut Schift. Air-suspended two-dimensional polymer photonic crystal slab waveguides fabricated by nanoimprint lithography. Applied Physics Letters, 90(22):221109, 2007. ISSN 0003-6951. 10.1063/1.2744482. Google Scholar

  • [21] Azzedine Boudrioua. Photonic Waveguides. John Wiley & Sons, 2009. ISBN 978-0-47-061114-2. 10.1002/9780470611142. Google Scholar

  • [22] L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman. Optofluidic devices and applications in photonics, sensing and imaging. Lab Chip, 12(19):3543–3551, 2012. ISSN 1473-0189. 10.1039/c2lc40467b. Web of ScienceGoogle Scholar

  • [23] Romeo Bernini, Stefania Campopiano, Luigi Zeni, and Pasqualina M. Sarro. ARROW optical waveguides based sensors. Sensors and Actuators B-Chemical, 100(1-2):143– 146, 2004. ISSN 09254005. 10.1016/j.snb.2003.12.035. CrossrefGoogle Scholar

  • [24] D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins. Integrated optical waveguides with liquid cores. Applied Physics Letters, 85(16):3477–3479, 2004. ISSN 0003- 6951. 10.1063/1.1807966. CrossrefGoogle Scholar

  • [25] J. Sun and C. C. Chan. Photonic bandgap fiber for refractive index measurement. Sensors and Actuators B-Chemical, 128 (1):46–50, 2007. ISSN 0925-4005. 10.1016/j.snb.2007.05.037. Web of ScienceCrossrefGoogle Scholar

  • [26] Hang Qu and Maksim Skorobogatiy. Liquid-core lowrefractive- index-contrast Bragg fiber sensor. Applied Physics Letters, 98(20):201114, 2011. ISSN 00036951. 10.1063/1.3592758. CrossrefGoogle Scholar

  • [27] K. J. Rowland, V. Shahraam Afshar, A. Stolyarov, Y. Fink, and T. M. Monro. Bragg waveguides with low-index liquid cores. Opt Express, 20(1):48–62, 2012. ISSN 1094-4087. 10.1364/OE.20.000048. CrossrefGoogle Scholar

  • [28] H. Schmidt and A. R. Hawkins. The photonic integration of non-solid media using optofluidics. Nature Photonics, 5(10): 598–604, 2011. ISSN 1749-4885. 10.1038/Nphoton.2011.163. Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2015-09-12

Accepted: 2015-11-08

Published Online: 2015-12-31


Citation Information: Optofluidics, Microfluidics and Nanofluidics, ISSN (Online) 2300-7435, DOI: https://doi.org/10.1515/optof-2015-0003.

Export Citation

© 2015 Markus Knoerzer et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in