Jump to ContentJump to Main Navigation
Show Summary Details

Optofluidics, Microfluidics and Nanofluidics

formerly Optofluidics

Ed. by Sada, Cinzia

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2300-7435
See all formats and pricing




BANSAI - An optofluidic approach for biomedical analysis

Markus Knoerzer
  • Institute for Optofluidics and Nanophotonics (IONAS), Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany
  • Microplatforms Research Group, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia
/ Christoph Prokop
  • Institute for Optofluidics and Nanophotonics (IONAS), Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany
  • Microplatforms Research Group, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia
/ Graciete M. Rodrigues Ribeiro
  • Zentralinstitut für Laboratoriumsmedizin, Mikrobiologie und Transfusionsmedizin, Städtisches Klinikum Karlsruhe, Moltkestr. 90, 76133 Karlsruhe, Germany
/ Horst Mayer
  • Zentralinstitut für Laboratoriumsmedizin, Mikrobiologie und Transfusionsmedizin, Städtisches Klinikum Karlsruhe, Moltkestr. 90, 76133 Karlsruhe, Germany
/ Jens Brümmer
  • Zentralinstitut für Laboratoriumsmedizin, Mikrobiologie und Transfusionsmedizin, Städtisches Klinikum Karlsruhe, Moltkestr. 90, 76133 Karlsruhe, Germany
/ Arnan Mitchell
  • Microplatforms Research Group, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia
/ Dominik G. Rabus
  • Microplatforms Research Group, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476, Melbourne VIC 3001, Australia
  • Bürkert Fluid Control Systems, Christian-Bürkert- Str. 13-17, 74653 Ingelfingen, Germany
/ Christian Karnutsch
  • Institute for Optofluidics and Nanophotonics (IONAS), Karlsruhe University of Applied Sciences, Moltkestr. 30, 76133 Karlsruhe, Germany
Published Online: 2015-12-31 | DOI: https://doi.org/10.1515/optof-2015-0003

Abstract

Lab-on-a-chip based portable blood analysis systems would allow point-of-care measurements, e.g. in an ambulance, or in remote areas with no fast access to medical care. Such a systemwould provide much faster information about the health of a patient. Here,we present a system that is based on absorption spectroscopy and uses an organic laser, which is tunable in the visible range. The feasibility of the system is shown with a table-top setup using laboratory equipment. Measurements of human albumin show linear behaviour in a range from 2.5 g/L to 60 g/L. In a consecutive setup the system is implemented on a microfluidic chip and is capable of measuring simultaneously transmitted and side scattered intensities, even with ambient light present. Air-suspended grating couplers on polymers are shown as the first element of a lab-on-a-chip implementation.

Keywords: optofluidic; microfluidic; biomedical analysis; blood analysis; lab-on-a-chip; point-of-care analysis; organic laser

References

  • [1] T. Woggon, S. Klinkhammer, and U. Lemmer. Compact spectroscopy system based on tunable organic semiconductor lasers. Applied Physics B, 99(1-2):47–51, 2010. ISSN 0946-2171. 10.1007/s00340-010-3953-6. [Crossref]

  • [2] Peter Atkins and Julio de Paula. Physical Chemistry. W. H. Freeman, Murray Hill, New Jersey, 8th edition, 2006. ISBN 978-0-716-78759-4.

  • [3] International Union of Pure Chemistry and Applied. Compendium of Chemical Terminology - Gold Book. February 2014. URL http://goldbook.iupac.org/. Version 2.3.3.

  • [4] Christian Karnutsch. Low Threshold Organic Thin Film Laser Devices. Cuvillier Verlag, 2007. ISBN 978-3-86-727306-0.

  • [5] Karsten Rebner. Ortsaufgelöste Streulichtspektroskopie an mikrostrukturierten Systemen. PhD-Thesis, Eberhard-Karls- Universität Tübingen, 2010.

  • [6] Dominik G. Rabus. Optofluidics Systems Technology. De Gruyter, Berlin, Boston, 2014. ISBN 978-3-11-035021-0. 10.1515/9783110350210.

  • [7] Polyplastics Co., Ltd. Thermoplastic Olefin Polymer of Amorphous Structure (COC), July 2013. URL http://www.polyplastics. com/en/product/lines/topas/general_e.pdf.

  • [8] VISOLAS GmbH. VISOLAS DO, March 2012. URL http://visolas. de/en/visolas-do/.

  • [9] VISOLAS GmbH. VISOLAS VIS PD Amp, July 2014. URL http://visolas.de/en/photodiodenverstaerkerhigh-speedphotodiode- amplifier/.

  • [10] D. Psaltis, S. R. Quake, and C. Yang. Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 442(7101):381–386, 2006. ISSN 1476-4687. 10.1038/nature05060.

  • [11] C. Monat, P. Domachuk, and B. J. Eggleton. Integrated optofluidics: A new river of light. Nature Photonics, 1(2):106–114, 2007. ISSN 1749-4885. 10.1038/nphoton.2006.96. [Web of Science] [Crossref]

  • [12] X. Fan and I. M. White. Optofluidic microsystems for chemical and biological analysis. Nature Photonics, 5(10):591–597, 2011. ISSN 1749-4885. 10.1038/nphoton.2011.206. [Crossref] [Web of Science]

  • [13] Rebecca J. Jackman, Tamara M. Floyd, Reza Ghodssi, Martin A. Schmidt, and Klavs F. Jensen. Microfluidic systems with online UV detection fabricated in photodefinable epoxy. Journal of Micromechanics and Microengineering, 11(3):263–269, 2001. ISSN 0960-1317. 10.1088/0960-1317/11/3/316.

  • [14] D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets. An out-of-plane grating coupler for eflcient buttcoupling between compact planar waveguides and singlemode fibers. IEEE Journal of Quantum Electronics, 38(7):949– 955, 2002. ISSN 0018-9197. 10.1109/jqe.2002.1017613. [Crossref]

  • [15] Roman Bruck and Rainer Hainberger. Eflcient coupling of narrow beams into polyimide waveguides by means of grating couplers with high-index grating. Applied Optics, 49(10): 1972–1978, 2010. ISSN 1559-128x. 10.1364/Ao.49.001972. [Crossref] [Web of Science]

  • [16] Linghua Wang, Yanlu Li, Marco Garcia Porcel, Diedrik Vermeulen, Xiuyou Han, Jinyan Wang, Xigao Jian, Roel Baets, Mingshan Zhao, and Geert Morthier. A polymer-based surface grating coupler with an embedded Si3N4 layer. Journal of Applied Physics, 111(11):114507, 2012. ISSN 0021-8979. 10.1063/1.4724335. [Crossref]

  • [17] Qifa Liu, Zheng Shi, Gangyi Zhu, Wei Wang, Zhenhai Wang, and Yongjin Wang. Freestanding GaN grating couplers at visible wavelengths. Journal of Optics, 17(4):045607, 2015. ISSN 2040-8978. 10.1088/2040-8978/17/4/045607. [Crossref] [Web of Science]

  • [18] M. Loncar, T. Doll, J. Vuckovic, and A. Scherer. Design and fabrication of silicon photonic crystal optical waveguides. Journal of Lightwave Technology, 18(10):1402–1411, 2000. ISSN 0733-8724. [Crossref]

  • [19] Guangyuan Si, Ee Jin Teo, Andrew A. Bettiol, Jinghua Teng, and Aaron J. Danner. Suspended slab and photonic crystal waveguides in lithium niobate. Journal of Vacuum Science & Technology B, 28(2):316–320, 2010. ISSN 1071-1023. 10.1116/1.3327925.

  • [20] Choon-Gi Choi, Young-Tak Han, Jin Tae Kim, and Helmut Schift. Air-suspended two-dimensional polymer photonic crystal slab waveguides fabricated by nanoimprint lithography. Applied Physics Letters, 90(22):221109, 2007. ISSN 0003-6951. 10.1063/1.2744482.

  • [21] Azzedine Boudrioua. Photonic Waveguides. John Wiley & Sons, 2009. ISBN 978-0-47-061114-2. 10.1002/9780470611142.

  • [22] L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman. Optofluidic devices and applications in photonics, sensing and imaging. Lab Chip, 12(19):3543–3551, 2012. ISSN 1473-0189. 10.1039/c2lc40467b. [Web of Science]

  • [23] Romeo Bernini, Stefania Campopiano, Luigi Zeni, and Pasqualina M. Sarro. ARROW optical waveguides based sensors. Sensors and Actuators B-Chemical, 100(1-2):143– 146, 2004. ISSN 09254005. 10.1016/j.snb.2003.12.035. [Crossref]

  • [24] D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins. Integrated optical waveguides with liquid cores. Applied Physics Letters, 85(16):3477–3479, 2004. ISSN 0003- 6951. 10.1063/1.1807966. [Crossref]

  • [25] J. Sun and C. C. Chan. Photonic bandgap fiber for refractive index measurement. Sensors and Actuators B-Chemical, 128 (1):46–50, 2007. ISSN 0925-4005. 10.1016/j.snb.2007.05.037. [Web of Science] [Crossref]

  • [26] Hang Qu and Maksim Skorobogatiy. Liquid-core lowrefractive- index-contrast Bragg fiber sensor. Applied Physics Letters, 98(20):201114, 2011. ISSN 00036951. 10.1063/1.3592758. [Crossref]

  • [27] K. J. Rowland, V. Shahraam Afshar, A. Stolyarov, Y. Fink, and T. M. Monro. Bragg waveguides with low-index liquid cores. Opt Express, 20(1):48–62, 2012. ISSN 1094-4087. 10.1364/OE.20.000048. [Crossref]

  • [28] H. Schmidt and A. R. Hawkins. The photonic integration of non-solid media using optofluidics. Nature Photonics, 5(10): 598–604, 2011. ISSN 1749-4885. 10.1038/Nphoton.2011.163. [Web of Science] [Crossref]


Received: 2015-09-12

Accepted: 2015-11-08

Published Online: 2015-12-31


Citation Information: Optofluidics, Microfluidics and Nanofluidics. Volume 2, Issue 1, Pages 22–30, ISSN (Online) 2300-7435, DOI: https://doi.org/10.1515/optof-2015-0003, December 2015

© 2015 Markus Knoerzer et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.