Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 31, 2015

BANSAI - An optofluidic approach for biomedical analysis

  • Markus Knoerzer , Christoph Prokop , Graciete M. Rodrigues Ribeiro , Horst Mayer , Jens Brümmer , Arnan Mitchell , Dominik G. Rabus and Christian Karnutsch

Abstract

Lab-on-a-chip based portable blood analysis systems would allow point-of-care measurements, e.g. in an ambulance, or in remote areas with no fast access to medical care. Such a systemwould provide much faster information about the health of a patient. Here,we present a system that is based on absorption spectroscopy and uses an organic laser, which is tunable in the visible range. The feasibility of the system is shown with a table-top setup using laboratory equipment. Measurements of human albumin show linear behaviour in a range from 2.5 g/L to 60 g/L. In a consecutive setup the system is implemented on a microfluidic chip and is capable of measuring simultaneously transmitted and side scattered intensities, even with ambient light present. Air-suspended grating couplers on polymers are shown as the first element of a lab-on-a-chip implementation.

References

[1] T. Woggon, S. Klinkhammer, and U. Lemmer. Compact spectroscopy system based on tunable organic semiconductor lasers. Applied Physics B, 99(1-2):47–51, 2010. ISSN 0946-2171. 10.1007/s00340-010-3953-6. 10.1007/s00340-010-3953-6Search in Google Scholar

[2] Peter Atkins and Julio de Paula. Physical Chemistry. W. H. Freeman, Murray Hill, New Jersey, 8th edition, 2006. ISBN 978-0-716-78759-4. Search in Google Scholar

[3] International Union of Pure Chemistry and Applied. Compendium of Chemical Terminology - Gold Book. February 2014. URL http://goldbook.iupac.org/. Version 2.3.3. Search in Google Scholar

[4] Christian Karnutsch. Low Threshold Organic Thin Film Laser Devices. Cuvillier Verlag, 2007. ISBN 978-3-86-727306-0. Search in Google Scholar

[5] Karsten Rebner. Ortsaufgelöste Streulichtspektroskopie an mikrostrukturierten Systemen. PhD-Thesis, Eberhard-Karls- Universität Tübingen, 2010. Search in Google Scholar

[6] Dominik G. Rabus. Optofluidics Systems Technology. De Gruyter, Berlin, Boston, 2014. ISBN 978-3-11-035021-0. 10.1515/9783110350210. Search in Google Scholar

[7] Polyplastics Co., Ltd. Thermoplastic Olefin Polymer of Amorphous Structure (COC), July 2013. URL http://www.polyplastics. com/en/product/lines/topas/general_e.pdf. Search in Google Scholar

[8] VISOLAS GmbH. VISOLAS DO, March 2012. URL http://visolas. de/en/visolas-do/. Search in Google Scholar

[9] VISOLAS GmbH. VISOLAS VIS PD Amp, July 2014. URL http://visolas.de/en/photodiodenverstaerkerhigh-speedphotodiode- amplifier/. Search in Google Scholar

[10] D. Psaltis, S. R. Quake, and C. Yang. Developing optofluidic technology through the fusion of microfluidics and optics. Nature, 442(7101):381–386, 2006. ISSN 1476-4687. 10.1038/nature05060. Search in Google Scholar

[11] C. Monat, P. Domachuk, and B. J. Eggleton. Integrated optofluidics: A new river of light. Nature Photonics, 1(2):106–114, 2007. ISSN 1749-4885. 10.1038/nphoton.2006.96. Search in Google Scholar

[12] X. Fan and I. M. White. Optofluidic microsystems for chemical and biological analysis. Nature Photonics, 5(10):591–597, 2011. ISSN 1749-4885. 10.1038/nphoton.2011.206. 10.1038/nphoton.2011.206Search in Google Scholar PubMed PubMed Central

[13] Rebecca J. Jackman, Tamara M. Floyd, Reza Ghodssi, Martin A. Schmidt, and Klavs F. Jensen. Microfluidic systems with online UV detection fabricated in photodefinable epoxy. Journal of Micromechanics and Microengineering, 11(3):263–269, 2001. ISSN 0960-1317. 10.1088/0960-1317/11/3/316. 10.1088/0960-1317/11/3/316Search in Google Scholar

[14] D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets. An out-of-plane grating coupler for eflcient buttcoupling between compact planar waveguides and singlemode fibers. IEEE Journal of Quantum Electronics, 38(7):949– 955, 2002. ISSN 0018-9197. 10.1109/jqe.2002.1017613. 10.1109/JQE.2002.1017613Search in Google Scholar

[15] Roman Bruck and Rainer Hainberger. Eflcient coupling of narrow beams into polyimide waveguides by means of grating couplers with high-index grating. Applied Optics, 49(10): 1972–1978, 2010. ISSN 1559-128x. 10.1364/Ao.49.001972. 10.1364/AO.49.001972Search in Google Scholar PubMed

[16] Linghua Wang, Yanlu Li, Marco Garcia Porcel, Diedrik Vermeulen, Xiuyou Han, Jinyan Wang, Xigao Jian, Roel Baets, Mingshan Zhao, and Geert Morthier. A polymer-based surface grating coupler with an embedded Si3N4 layer. Journal of Applied Physics, 111(11):114507, 2012. ISSN 0021-8979. 10.1063/1.4724335. 10.1063/1.4724335Search in Google Scholar

[17] Qifa Liu, Zheng Shi, Gangyi Zhu, Wei Wang, Zhenhai Wang, and Yongjin Wang. Freestanding GaN grating couplers at visible wavelengths. Journal of Optics, 17(4):045607, 2015. ISSN 2040-8978. 10.1088/2040-8978/17/4/045607. 10.1088/2040-8978/17/4/045607Search in Google Scholar

[18] M. Loncar, T. Doll, J. Vuckovic, and A. Scherer. Design and fabrication of silicon photonic crystal optical waveguides. Journal of Lightwave Technology, 18(10):1402–1411, 2000. ISSN 0733-8724. 10.1109/50.887192Search in Google Scholar

[19] Guangyuan Si, Ee Jin Teo, Andrew A. Bettiol, Jinghua Teng, and Aaron J. Danner. Suspended slab and photonic crystal waveguides in lithium niobate. Journal of Vacuum Science & Technology B, 28(2):316–320, 2010. ISSN 1071-1023. 10.1116/1.3327925. 10.1116/1.3327925Search in Google Scholar

[20] Choon-Gi Choi, Young-Tak Han, Jin Tae Kim, and Helmut Schift. Air-suspended two-dimensional polymer photonic crystal slab waveguides fabricated by nanoimprint lithography. Applied Physics Letters, 90(22):221109, 2007. ISSN 0003-6951. 10.1063/1.2744482. 10.1063/1.2744482Search in Google Scholar

[21] Azzedine Boudrioua. Photonic Waveguides. John Wiley & Sons, 2009. ISBN 978-0-47-061114-2. 10.1002/9780470611142. 10.1002/9780470611142Search in Google Scholar

[22] L. Pang, H. M. Chen, L. M. Freeman, and Y. Fainman. Optofluidic devices and applications in photonics, sensing and imaging. Lab Chip, 12(19):3543–3551, 2012. ISSN 1473-0189. 10.1039/c2lc40467b. 10.1039/c2lc40467bSearch in Google Scholar PubMed

[23] Romeo Bernini, Stefania Campopiano, Luigi Zeni, and Pasqualina M. Sarro. ARROW optical waveguides based sensors. Sensors and Actuators B-Chemical, 100(1-2):143– 146, 2004. ISSN 09254005. 10.1016/j.snb.2003.12.035. 10.1016/j.snb.2003.12.035Search in Google Scholar

[24] D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins. Integrated optical waveguides with liquid cores. Applied Physics Letters, 85(16):3477–3479, 2004. ISSN 0003- 6951. 10.1063/1.1807966. 10.1063/1.1807966Search in Google Scholar

[25] J. Sun and C. C. Chan. Photonic bandgap fiber for refractive index measurement. Sensors and Actuators B-Chemical, 128 (1):46–50, 2007. ISSN 0925-4005. 10.1016/j.snb.2007.05.037. 10.1016/j.snb.2007.05.037Search in Google Scholar

[26] Hang Qu and Maksim Skorobogatiy. Liquid-core lowrefractive- index-contrast Bragg fiber sensor. Applied Physics Letters, 98(20):201114, 2011. ISSN 00036951. 10.1063/1.3592758. 10.1063/1.3592758Search in Google Scholar

[27] K. J. Rowland, V. Shahraam Afshar, A. Stolyarov, Y. Fink, and T. M. Monro. Bragg waveguides with low-index liquid cores. Opt Express, 20(1):48–62, 2012. ISSN 1094-4087. 10.1364/OE.20.000048. 10.1364/OE.20.000048Search in Google Scholar PubMed

[28] H. Schmidt and A. R. Hawkins. The photonic integration of non-solid media using optofluidics. Nature Photonics, 5(10): 598–604, 2011. ISSN 1749-4885. 10.1038/Nphoton.2011.163. 10.1038/nphoton.2011.163Search in Google Scholar

Received: 2015-9-12
Accepted: 2015-11-8
Published Online: 2015-12-31

© 2015 Markus Knoerzer et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/optof-2015-0003/html
Scroll to top button