Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Optofluidics, Microfluidics and Nanofluidics

formerly Optofluidics

Ed. by Sada, Cinzia

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2300-7435
See all formats and pricing
More options …

Multimode fibres for micro-endoscopy

Sergey Turtaev
  • Corresponding author
  • Čižmár: Complex Photonics Group, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ivo T. Leite
  • Corresponding author
  • Čižmár: Complex Photonics Group, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tomáš Čižmár
  • Corresponding author
  • Čižmár: Complex Photonics Group, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-31 | DOI: https://doi.org/10.1515/optof-2015-0004

Abstract

There has been a tremendous effort in modern microscopy towards miniaturisation and fibre-based technology, driven by the need to access hostile or difficult environments in situ and in vivo. Most of these rely on reducing the size of endoscopes based on fibre-optic bundles, and systems incorporating microfabricated lenses. Recently, the use of standard multimode optical fibres for lensless microscopy has become possible mainly due to advances in holographic beam shaping. This article reviews the methods and techniques behind this progress paving theway towards minimally invasive in vivo imaging as well as other applications of multimode waveguides including on-chip integration of optical micro-manipulation and numerous other biophotonics techniques.

Keywords: Fiber optics; digital holography; endoscopy; turbid media; imaging

References

  • [1] H. H. Hopkins and N. S. Kapany, A flexible fibrescope, using static scanning, Nature 173, 1954, 39. Google Scholar

  • [2] B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, Fiber-optic fluorescence imaging, Nat. Methods 2, 2005, 941. CrossrefGoogle Scholar

  • [3] A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Controlling waves in space and time for imaging and focusing in complex media, Nat. Photonics 6, 2012, 283. CrossrefWeb of ScienceGoogle Scholar

  • [4] S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, a. C. Boccara, and S. Gigan, Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media, Phys. Rev. Lett. 104, 2010,100601. CrossrefWeb of ScienceGoogle Scholar

  • [5] S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, Image transmission through an opaque material, Nat. Commun. 1, 2010, 81. CrossrefWeb of ScienceGoogle Scholar

  • [6] II. M. Vellekoop and A. P. Mosk, Focusing coherent light through opaque strongly scattering media, Opt. Lett. 32, 2007, 2309. Web of ScienceCrossrefGoogle Scholar

  • [7] I. M. Vellekoop and A. P. Mosk, Universal optimal transmission of light through disordered materials, Phys. Rev. Lett. 101, 2008, 120601. CrossrefWeb of ScienceGoogle Scholar

  • [8] T. Čižmár, M. Mazilu, and K. Dholakia, In situ wavefront correction and its application to micromanipulation, Nat. Photonics 4, 2010, 388. CrossrefWeb of ScienceGoogle Scholar

  • [9] J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Non-invasive imaging through opaque scattering layers, Nature 491, 2012, 232. Web of ScienceGoogle Scholar

  • [10] O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, Focusing and compression of ultrashort pulses through scattering media, Nat. Photonics 5, 2011, 372. CrossrefWeb of ScienceGoogle Scholar

  • [11] X. Xu, H. Liu, and L. V. Wang, Time-reversed ultrasonically encoded optical focusing into scattering media, Nat. Photonics 5, 2010, 154. CrossrefWeb of ScienceGoogle Scholar

  • [12] B. Judkewitz, Y. Wang, and R. Horstmeyer, Specklescale focusing in the diffusive regime with time reversal of varianceencoded light (TROVE), Nat. Photonics 7, 2013, 300. Web of ScienceCrossrefGoogle Scholar

  • [13] T. Čižmár and K. Dholakia, Exploiting multimode waveguides for pure fibre-based imaging, Nat. Commun. 3, 2012, 1027. Web of ScienceCrossrefGoogle Scholar

  • [14] R. Di Leonardo and S. Bianchi, Hologram transmission through multi-mode optical fibers Opt. Express 19, 2011, 1867. Web of ScienceGoogle Scholar

  • [15] S. Bianchi and R. Di Leonardo, A multi-mode fiber probe for holographic micromanipulation and microscopy, Lab. Chip 12, 2012, 635. Web of ScienceCrossrefGoogle Scholar

  • [16] T. Čižmár and K. Dholakia, Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics, Opt. Express 19, 2011, 18871. Web of ScienceCrossrefGoogle Scholar

  • [17] Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Scanner-free and widefield endoscopic imaging by using a single multimode optical fiber, Phys. Rev. Lett. 109, 2012, 203901. Web of ScienceCrossrefGoogle Scholar

  • [18] I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, Focusing and scanning light through a multimode optical fiber using digital phase conjugation, Opt. Express 20, 2012, 10583. Web of ScienceCrossrefGoogle Scholar

  • [19] I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, Highresolution, lensless endoscope based on digital scanning through a multimode optical fiber, Biomed. Opt. Express 4, 2013, 260. CrossrefWeb of ScienceGoogle Scholar

  • [20] E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, Delivery of focused short pulses through a multimode fiber, Opt. Express 23, 2015, 9109. CrossrefWeb of ScienceGoogle Scholar

  • [21] I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, Increasing the imaging capabilities of multimode fibers by exploiting the properties of highly scattering media, Opt. Lett. 38, 2013, 2776. CrossrefWeb of ScienceGoogle Scholar

  • [22] R. N. Mahalati, R. Y. Gu, and J. M. Kahn, Resolution limits for imaging through multi-mode fiber, Opt. Express 21, 2013, 1656. CrossrefGoogle Scholar

  • [23] A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, Real-time resilient focusing through a bending multimode fiber, Opt. Express 21, 2013, 12881. CrossrefGoogle Scholar

  • [24] M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár, GPU accelerated toolbox for real-time beam-shaping in multimode fibres, Opt. Express 22, 2014, 10583. Web of ScienceCrossrefGoogle Scholar

  • [25] M. Plöschner and T. Čižmár, Compact multimode fiber beamshaping system based on GPU accelerated digital holography, Opt. Lett. 40, 2015, 197. Web of ScienceCrossrefGoogle Scholar

  • [26] M. Plöschner T. Tyc, and T. Čižmár, Seeing through chaos in multimode fibres, Nat. Photonics 9, 2015, 529. Web of ScienceCrossrefGoogle Scholar

  • [27] S. Farahi, D. Ziegler, I. N. Papadopoulos, D. Psaltis and C. Moser, Dynamic bending compensation while focusing through a multimode fiber, Opt. Express 21, 2013, 510. Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2015-10-06

Accepted: 2015-11-03

Published Online: 2015-12-31


Citation Information: Optofluidics, Microfluidics and Nanofluidics, ISSN (Online) 2300-7435, DOI: https://doi.org/10.1515/optof-2015-0004.

Export Citation

© 2015 Sergey Turtaev et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in