Jump to ContentJump to Main Navigation
Show Summary Details

Optofluidics, Microfluidics and Nanofluidics

formerly Optofluidics

Ed. by Sada, Cinzia

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2300-7435
See all formats and pricing




Multimode fibres for micro-endoscopy

Sergey Turtaev
  • Čižmár: Complex Photonics Group, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
/ Ivo T. Leite
  • Čižmár: Complex Photonics Group, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
/ Tomáš Čižmár
  • Čižmár: Complex Photonics Group, School of Science and Engineering, University of Dundee, Dundee DD1 4HN, United Kingdom
Published Online: 2015-12-31 | DOI: https://doi.org/10.1515/optof-2015-0004

Abstract

There has been a tremendous effort in modern microscopy towards miniaturisation and fibre-based technology, driven by the need to access hostile or difficult environments in situ and in vivo. Most of these rely on reducing the size of endoscopes based on fibre-optic bundles, and systems incorporating microfabricated lenses. Recently, the use of standard multimode optical fibres for lensless microscopy has become possible mainly due to advances in holographic beam shaping. This article reviews the methods and techniques behind this progress paving theway towards minimally invasive in vivo imaging as well as other applications of multimode waveguides including on-chip integration of optical micro-manipulation and numerous other biophotonics techniques.

Keywords: Fiber optics; digital holography; endoscopy; turbid media; imaging

References

  • [1] H. H. Hopkins and N. S. Kapany, A flexible fibrescope, using static scanning, Nature 173, 1954, 39.

  • [2] B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, Fiber-optic fluorescence imaging, Nat. Methods 2, 2005, 941. [Crossref]

  • [3] A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Controlling waves in space and time for imaging and focusing in complex media, Nat. Photonics 6, 2012, 283. [Crossref] [Web of Science]

  • [4] S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, a. C. Boccara, and S. Gigan, Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media, Phys. Rev. Lett. 104, 2010,100601. [Crossref] [Web of Science]

  • [5] S. M. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, Image transmission through an opaque material, Nat. Commun. 1, 2010, 81. [Crossref] [Web of Science]

  • [6] II. M. Vellekoop and A. P. Mosk, Focusing coherent light through opaque strongly scattering media, Opt. Lett. 32, 2007, 2309. [Web of Science] [Crossref]

  • [7] I. M. Vellekoop and A. P. Mosk, Universal optimal transmission of light through disordered materials, Phys. Rev. Lett. 101, 2008, 120601. [Crossref] [Web of Science]

  • [8] T. Čižmár, M. Mazilu, and K. Dholakia, In situ wavefront correction and its application to micromanipulation, Nat. Photonics 4, 2010, 388. [Crossref] [Web of Science]

  • [9] J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, Non-invasive imaging through opaque scattering layers, Nature 491, 2012, 232. [Web of Science]

  • [10] O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, Focusing and compression of ultrashort pulses through scattering media, Nat. Photonics 5, 2011, 372. [Crossref] [Web of Science]

  • [11] X. Xu, H. Liu, and L. V. Wang, Time-reversed ultrasonically encoded optical focusing into scattering media, Nat. Photonics 5, 2010, 154. [Crossref] [Web of Science]

  • [12] B. Judkewitz, Y. Wang, and R. Horstmeyer, Specklescale focusing in the diffusive regime with time reversal of varianceencoded light (TROVE), Nat. Photonics 7, 2013, 300. [Web of Science] [Crossref]

  • [13] T. Čižmár and K. Dholakia, Exploiting multimode waveguides for pure fibre-based imaging, Nat. Commun. 3, 2012, 1027. [Web of Science] [Crossref]

  • [14] R. Di Leonardo and S. Bianchi, Hologram transmission through multi-mode optical fibers Opt. Express 19, 2011, 1867. [Web of Science]

  • [15] S. Bianchi and R. Di Leonardo, A multi-mode fiber probe for holographic micromanipulation and microscopy, Lab. Chip 12, 2012, 635. [Web of Science] [Crossref]

  • [16] T. Čižmár and K. Dholakia, Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics, Opt. Express 19, 2011, 18871. [Web of Science] [Crossref]

  • [17] Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, Scanner-free and widefield endoscopic imaging by using a single multimode optical fiber, Phys. Rev. Lett. 109, 2012, 203901. [Web of Science] [Crossref]

  • [18] I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, Focusing and scanning light through a multimode optical fiber using digital phase conjugation, Opt. Express 20, 2012, 10583. [Web of Science] [Crossref]

  • [19] I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, Highresolution, lensless endoscope based on digital scanning through a multimode optical fiber, Biomed. Opt. Express 4, 2013, 260. [Crossref] [Web of Science]

  • [20] E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, Delivery of focused short pulses through a multimode fiber, Opt. Express 23, 2015, 9109. [Crossref] [Web of Science]

  • [21] I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, Increasing the imaging capabilities of multimode fibers by exploiting the properties of highly scattering media, Opt. Lett. 38, 2013, 2776. [Crossref] [Web of Science]

  • [22] R. N. Mahalati, R. Y. Gu, and J. M. Kahn, Resolution limits for imaging through multi-mode fiber, Opt. Express 21, 2013, 1656. [Crossref]

  • [23] A. M. Caravaca-Aguirre, E. Niv, D. B. Conkey, and R. Piestun, Real-time resilient focusing through a bending multimode fiber, Opt. Express 21, 2013, 12881. [Crossref]

  • [24] M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár, GPU accelerated toolbox for real-time beam-shaping in multimode fibres, Opt. Express 22, 2014, 10583. [Web of Science] [Crossref]

  • [25] M. Plöschner and T. Čižmár, Compact multimode fiber beamshaping system based on GPU accelerated digital holography, Opt. Lett. 40, 2015, 197. [Web of Science] [Crossref]

  • [26] M. Plöschner T. Tyc, and T. Čižmár, Seeing through chaos in multimode fibres, Nat. Photonics 9, 2015, 529. [Web of Science] [Crossref]

  • [27] S. Farahi, D. Ziegler, I. N. Papadopoulos, D. Psaltis and C. Moser, Dynamic bending compensation while focusing through a multimode fiber, Opt. Express 21, 2013, 510. [Web of Science] [Crossref]


Received: 2015-10-06

Accepted: 2015-11-03

Published Online: 2015-12-31


Citation Information: Optofluidics, Microfluidics and Nanofluidics. Volume 2, Issue 1, Pages 31–35, ISSN (Online) 2300-7435, DOI: https://doi.org/10.1515/optof-2015-0004, December 2015

© 2015 Sergey Turtaev et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Comments (0)

Please log in or register to comment.