Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Optofluidics, Microfluidics and Nanofluidics

formerly Optofluidics

Ed. by Sada, Cinzia

1 Issue per year


Emerging Science

Open Access
Online
ISSN
2300-7435
See all formats and pricing
More options …

Lamellar spacing of photosystem II membrane fragments upon dehydration studied by neutron membrane diffraction

Jörg Pieper
  • Corresponding author
  • Institute of Physics, University of Tartu, Tartu, Estonia
/ Leonid Rusevich
  • Corresponding author
  • Institute of Physical Energetics, Riga, Latvia
/ Thomas Hauß
  • Corresponding author
  • Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
/ Gernot Renger
  • Corresponding author
  • Max-Volmer-Laboratories, Technical University Berlin, Germany
Published Online: 2015-12-31 | DOI: https://doi.org/10.1515/optof-2015-0005

Abstract

The effect of dehydration on the lamellar spacing of photosystem II (PS II) membrane fragments from spinach has been investigated using neutron membrane diffraction at room temperature. The diffraction data reveal a major peak at a scattering vector Q of 0.049 Å−1 at a relative humidity (r.h.) of 90% corresponding to a repeat distance D of about 129 Å. Upon dehydration to 44% r.h., this peak shifts to about 0.060 Å−1 corresponding to a distance of 104.7±2.5 Å. Within experimental error, the latter repeat distance remains almost the same at hydration levels below 44% r.h. indicating that most of the hydration water is removed. This result is consistent with the earlier finding that hydration-induced conformational protein motions in PS II membrane fragments are observed above 44% r.h. and correlated with the onset electron transfer in PS II (Pieper et al. 2008, Eur. Biophys. J. 37: 657–663).

Keywords: Neutron (membrane) diffraction; photosynthesis; photosystem II (PS II); hydration; dynamics-functionrelationship

References

  • [1] G. Renger, T. Renger, Photosystem II: The machinery of photosynthetic water splitting, Photosynth. Res. 98, 2008, 53. Web of ScienceGoogle Scholar

  • [2] J. Pieper, G. Renger, Protein dynamics investigated by neutron scattering, Photosynth. Res. 102, 2009, 281. Google Scholar

  • [3] P. Joliot, A. Joliot, Different types of quenching involved in Photosystem II centers, Biochim. Biophys. Acta 305, 1973, 302. Google Scholar

  • [4] A. Garbers, J. Kurreck, F. Reifarth, G. Renger, F. Parak, Correlation between protein flexibility and electron transfer from Q−· A to QB in PS II membrane fragments from spinach, Biochemistry 37, 1998, 11399. Google Scholar

  • [5] P. Kühn, J. Pieper, O. Kaminskaya, H.-J. Eckert, R. E. Lechner, V. Shuvalov, G. Renger, Reaction pattern of Photosystem II: oxidative water cleavage and protein flexibility, Photosyn. Res. 84, 2005, 317. Google Scholar

  • [6] J. Pieper, T. Hauß, A. Buchsteiner, K. Baczynski, K. Adamiak, R.E. Lechner, G. Renger, Temperature- and Hydration- Dependent Protein Dynamics in Photosystem II of Green Plants Studied by Quasielastic Neutron Scattering, Biochemistry 46, 2007, 11398. Web of ScienceGoogle Scholar

  • [7] O. Kaminskaya, G. Renger, V. Shuvalov, Effect of dehydration on light induced reactions in Photosystem II: Photoreactions of cytochrome b559. Biochemistry 42, 2003, 8119. Google Scholar

  • [8] J. Pieper, T. Hauß, A. Buchsteiner, G. Renger G, The effect of hydration on protein flexibility in photosystem II of green plants studied by quasielastic neutron scattering. Eur. Biophys. J. 37, 2008, 657. Web of ScienceGoogle Scholar

  • [9] F. Gabel, D. Bicout, U. Lehnert, M. Tehei, M. Weik, G. Zaccai, Protein dynamics studied by neutron scattering, Q. Rev. Biophys. 35, 2002, 327. Google Scholar

  • [10] J. Fitter, R. E. Lechner, N. A. Dencher, Interactions of hydration water and biological membranes studied by neutron scattering, J. Phys. Chem. B 103, 1999, 8036. Google Scholar

  • [11] M. Weik, G. Zaccai, N. A. Dencher, D. Oesterhelt, T. Hauß, Structure and hydration of the m-state of the bacteriorhodopsin mutant D96N studied by neutron diffraction, J. Mol. Biol. 275, 1998, 625. Google Scholar

  • [12] K. H. Tang, R. E. Blankenship, Neutron and light scattering studies of light-harvesting photosynthetic antenna complexes, Photosynth Res 111, 2012, 205. Web of ScienceGoogle Scholar

  • [13] G. Nagy, G. Garab, J. Pieper, Neutron Scattering in Photosynthesis Research, in: Contemporary Problems of Photosynthesis (Editors: S. Allakhverdiev, A. B. Rubin, V. A. Shuvalov) Izhevsk Institute of Computer Science, Izhevsk–Moscow, 2014, Vol. 1, p. 69–121. Google Scholar

  • [14] G. Nagy, D. Posselt, L. Kovács, J. K. Holm, M. Szabó, B. Ughy, L. Rosta, J. Peters, P. Timmins, G. Garab, Reversible membrane reorganizations during photosynthesis in vivo: revealed by small-angle neutron scattering, Biochem. J. 436, 2011, 225. Web of ScienceGoogle Scholar

  • [15] B. Daum, D. Nicastro, J. Austin, J. R. McIntosh, W. Kühlbrandt, Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. The Plant Cell 22, 2010, 1299. Web of ScienceGoogle Scholar

  • [16] J. J. K. Kirkensgaard, J. K. Holm, J. K. Larsen, D. Posselt, Simulation of small-angle X-ray scattering from thylakoid membranes, J. Appl. Crystallogr. 42, 2009, 649. Web of ScienceGoogle Scholar

  • [17] A. Zouni, H.-T. Witt, J. Kern, P. Fromme, N. Krauß, W. Saenger, P. Orth, Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution, Nature 409, 2001, 739. Google Scholar

  • [18] Y. Umena, K. Kawakami, J.-R. Shen, N. Kamiya, Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9A, Nature 473, 2011, 55. Google Scholar

  • [19] Z. Liu, H. Yan, K. Wang, T. Kuang, J. Zhang, L. Gui, X. An, W. Chang, Crystal structure of spinach major light-harvesting complex at 2.72 A resolution, Nature, 428 (6980), 2004, 287. Google Scholar

  • [20] J. Voigt, T. Renger, R. Schödel, T. Schrötter, J. Pieper, H. Redlin, Excitonic effects in the light-harvesting Chl a/b-protein complex of higher plants, Phys Status Solidi B, 194 (1), 1996, 333. Google Scholar

  • [21] J. Pieper, K.-D. Irrgang, M. Rätsep, T. Schrötter, J. Voigt, G. J. Small, G. Renger, Effects of aggregation on trimeric lightharvesting complex II of green plants: A hole-burning study, J Phys Chem A 103 (14), 1999, 2422. CrossrefGoogle Scholar

  • [22] J. Texeira, M.-C. Bellissent-Funel, S. H. Chen, A. J. Dianoux, Experimental determination of the nature of diffusive motions of water molecules at low temperature, Phys. Rev. A 31, 1985, 1913. Google Scholar

  • [23] J. Pieper, G. Charalambopoulou, T. Steriotis, S. Vasenkov, A. Desmedt, R. E. Lechner, Water Diffusion in Fully Hydrated Porcine Stratum Corneum, Chemical Physics 292, 2003, 465. Google Scholar

  • [24] J. Pieper, K.-D. Irrgang, G. Renger, R. E. Lechner, Density of Vibrational States of the Light-Harvesting Complex II of Green Plants Studied by Inelastic Neutron Scattering, J. Phys. Chem. B 108, 2004, 10556. Google Scholar

  • [25] G. Schiro, Y. Fichou, F.-X. Gallat, K. Wood, F. Gabel, M. Moulin et al., Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins, Nature Comm. 2015, DOI: 10.1038/ncomms7490 Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2015-10-06

Accepted: 2015-11-03

Published Online: 2015-12-31


Citation Information: Optofluidics, Microfluidics and Nanofluidics, ISSN (Online) 2300-7435, DOI: https://doi.org/10.1515/optof-2015-0005.

Export Citation

© 2015 Jörg Pieper et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in