Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Organelles Proteomics


Emerging Science

Open Access
Online
ISSN
2084-722X
See all formats and pricing
More options …

Subcellular Proteomics for Understanding Host Defense Peptides Mechanism of Action

Carlos López-Abarrategui / Anselmo J. Otero-González
Published Online: 2013-08-13 | DOI: https://doi.org/10.2478/orpr-2013-0003

Abstract

Host defense peptides occurring in plants, invertebrates and vertebrates, represent a primary and heterogeneous group of molecules against infectious agents which may act directly on microorganisms or exert a redirectional enhancement of the immune response to them. Such molecules are an alternative if not for substituting at least complementing the classical antibiotics in anti-infective therapies. Several mechanisms of actions have been described for the majority of host defense peptides mostly acting at level of plasma membrane but some of them interacting with intracellular targets. The elucidation of their mechanisms of action besides completing their functional characterization is important for the development of more efficient subsequent molecular variants. Proteomic analyses have been applied for identifying new host defense peptides but few of them have been described for explaining their mechanism of action. In this paper we would like to update the subject remaking the importance of organelle proteomics for such purpose.

Keywords : Subcellular proteomics; Host defense peptides; Mechanism of action

References

  • [1] Yount N.Y., Yeaman M.R., Emerging themes and therapeutic prospects for anti-infective peptides, Annu. Rev. Pharmacol. Toxicol., 2012, 52, 337-360CrossrefGoogle Scholar

  • [2] Yeung A.T., Gellatly S.L., Hancock R.E., Multifunctional cationic host defence peptides and their clinical applications, Cell Mol. Life Sci., 2011, 68, 2161-2176CrossrefGoogle Scholar

  • [3] Afacan N.J., Yeung A.T., Pena O.M., Hancock R.E., Therapeutic potential of host defense peptides in antibioticresistant infections, Curr. Pharm. Des., 2012, 18, 807-819CrossrefGoogle Scholar

  • [4] Hale J.D., Hancock R.E., Alternative mechanisms of action of cationic antimicrobial peptides on bacteria, Expert Rev. Anti. Infect. Ther., 2007, 5, 951-959CrossrefGoogle Scholar

  • [5] Liu J., Jiang J., Wu Z., Xie F., Antimicrobial peptides from the skin of the asian frog, odorrana jingdongensis: De novo sequencing and analysis of tandem mass spectrometry data, J. Proteomics, 2012, 75, 5807-5821CrossrefGoogle Scholar

  • [6] Zasloff M., Antimicrobial peptides of multicellular organisms, Nature, 2002, 415, 389-395Google Scholar

  • [7] Jenssen H., Hamill P., Hancock R.E., Peptide antimicrobial agents, Clin. Microbiol. Rev., 2006, 19, 491-511CrossrefGoogle Scholar

  • [8] Alba A., Lopez-Abarrategui C., Otero-Gonzalez A.J., Host defense peptides: An alternative as antiinfective and immunomodulatory therapeutics, Biopolymers, 2012, 98, 251-267Google Scholar

  • [9] Soletti R.C., del B.L., Daffre S., Miranda A., Borges H.L., Moura-Neto V., et al., Peptide gomesin triggers cell death through l-type channel calcium influx, MAPK/ERK, PKC and PI3K signaling and generation of reactive oxygen species, Chem. Biol. Interact., 2010, 186, 135-143Google Scholar

  • [10] Porter E.M., van D.E., Valore E.V., Ganz T., Broad-spectrum antimicrobial activity of human intestinal defensin 5, Infect. Immun., 1997, 65, 2396-2401Google Scholar

  • [11] Lynn M.A., Kindrachuk J., Marr A.K., Jenssen H., Pante N., Elliott M.R., et al., Effect of BMAP-28 antimicrobial peptides on leishmania major promastigote and amastigote growth: Role of leishmanolysin in parasite survival, PLoS Negl. Trop. Dis., 2011, 5, e1141CrossrefGoogle Scholar

  • [12] Deslouches B., Phadke S.M., Lazarevic V., Cascio M., Islam K., Montelaro R.C., et al., De novo generation of cationic antimicrobial peptides: Influence of length and tryptophan substitution on antimicrobial activity, Antimicrob. Agents Chemother., 2005, 49, 316-322CrossrefGoogle Scholar

  • [13] Yount N.Y., Yeaman M.R., Peptide antimicrobials: Cell wall as a bacterial target, Ann. NY Acad. Sci., 2013, 1277, 127-138Google Scholar

  • [14] Steinstraesser L., Kraneburg U., Jacobsen F., Al-Benna S., Host defense peptides and their antimicrobial-immunomodulatory duality, Immunobiology, 2011, 216, 322-333Google Scholar

  • [15] Rapaport D., Shai Y., Interaction of fluorescently labeled pardaxin and its analogues with lipid bilayers, J. Biol. Chem., 1991, 266, 23769-23775Google Scholar

  • [16] Ludtke S.J., He K., Heller W.T., Harroun T.A., Yang L., Huang H.W., Membrane pores induced by magainin, Biochemistry, 1996, 35, 13723-13728CrossrefGoogle Scholar

  • [17] Gazit E., Miller I.R., Biggin P.C., Sansom M.S., Shai Y., Structure and orientation of the mammalian antibacterial peptide cecropin p1 within phospholipid membranes, J. Mol. Biol., 1996, 258, 860-870Google Scholar

  • [18] Bechinger B., Lohner K., Detergent-like actions of linear amphipathic cationic antimicrobial peptides, Biochim. Biophys. Acta, 2006, 1758, 1529-1539Google Scholar

  • [19] Epand R.M., Epand R.F., Lipid domains in bacterial membranes and the action of antimicrobial agents, Biochim. Biophys. Acta, 2009, 1788, 289-294Google Scholar

  • [20] Almeida P.F., Pokorny A., Mechanisms of antimicrobial, cytolytic, and cell-penetrating peptides: From kinetics to thermodynamics, Biochemistry, 2009, 48, 8083-8093CrossrefGoogle Scholar

  • [21] Wimley W.C., Describing the mechanism of antimicrobial peptide action with the interfacial activity model, ACS Chem. Biol., 2010, 5, 905-917CrossrefGoogle Scholar

  • [22] Wimley W.C., Hristova K., Antimicrobial peptides: Successes, challenges and unanswered questions, J. Membr. Biol., 2011, 239, 27-34Google Scholar

  • [23] Krauson A.J., He J., Wimley W.C., Determining the mechanism of membrane permeabilizing peptides: Identification of potent, equilibrium pore-formers, Biochim. Biophys. Acta, 2012, 1818, 1625-1632Google Scholar

  • [24] Goldman R.C., Branstrom A., Targeting cell wall synthesis and assembly in microbes: Similarities and contrasts between bacteria and fungi, Curr. Pharm. Des., 1999, 5, 473-501Google Scholar

  • [25] Breukink E., Wiedemann I., van K.C., Kuipers O.P., Sahl H., de K.B., Use of the cell wall precursor lipid ii by a poreforming peptide antibiotic, Science, 1999, 286, 2361-2364Google Scholar

  • [26] Brotz H., Bierbaum G., Leopold K., Reynolds P.E., Sahl H.G., The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid ii, Antimicrob. Agents Chemother., 1998, 42, 154-160Google Scholar

  • [27] Schneider T., Kruse T., Wimmer R., Wiedemann I., Sass V., Pag U., et al., Plectasin, a fungal defensin, targets the bacterial cell wall precursor lipid II, Science, 2010, 328, 1168-1172Google Scholar

  • [28] Xiong Y.Q., Hady W.A., Deslandes A., Rey A., Fraisse L., Kristensen H.H., et al., Efficacy of NZ2114, a novel plectasin-derived cationic antimicrobial peptide antibiotic, in experimental endocarditis due to methicillin-resistant staphylococcus aureus, Antimicrob. Agents Chemother., 2011, 55, 5325-5330Google Scholar

  • [29] de L.E., Li C., Zeng P., Diepeveen-de B.M., Lu W.Y., Breukink E., et al., Functional interaction of human neutrophil peptide-1 with the cell wall precursor lipid II, FEBS Lett., 2010, 584, 1543-1548Google Scholar

  • [30] Sass V., Schneider T., Wilmes M., Korner C., Tossi A., Novikova N., et al., Human beta-defensin 3 inhibits cell wall biosynthesis in staphylococci, Infect. Immun., 2010, 78, 2793-2800Google Scholar

  • [31] Bouhss A., Al-Dabbagh B., Vincent M., Odaert B., umont- Nicaise M., Bressolier P., et al., Specific interactions of clausin, a new lantibiotic, with lipid precursors of the bacterial cell wall, Biophys. J., 2009, 97, 1390-1397Google Scholar

  • [32] Muller A., Ulm H., Reder-Christ K., Sahl H.G., Schneider T., Interaction of type a lantibiotics with undecaprenol-bound cell envelope precursors, Microb. Drug Resist., 2012, 18, 261-270CrossrefGoogle Scholar

  • [33] Park C.B., Kim H.S., Kim S.C., Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions, Biochem. Biophys. Res. Commun., 1998, 244, 253-257Google Scholar

  • [34] Park S.C., Kim J.Y., Jeong C., Yoo S., Hahm K.S., Park Y., A plausible mode of action of pseudin-2, an antimicrobial peptide from pseudis paradoxa, Biochim. Biophys. Acta, 2011, 1808, 171-182Google Scholar

  • [35] Otvos L., Jr., O I., Rogers M.E., Consolvo P.J., Condie B.A., Lovas S., et al., Interaction between heat shock proteins and antimicrobial peptides, Biochemistry, 2000, 39, 14150-14159CrossrefGoogle Scholar

  • [36] Luque-Ortega J.R., van’t Hof W., Veerman E.C., Saugar J.M., Rivas L., Human antimicrobial peptide histatin 5 is a cellpenetrating peptide targeting mitochondrial ATP synthesis in leishmania, FASEB J., 2008, 22, 1817-1828CrossrefGoogle Scholar

  • [37] Niklison Chirou M.V., Minahk C.J., Morero R.D., Antimitochondrial activity displayed by the antimicrobial peptide microcin j25, Biochem. Biophys. Res. Commun., 2004, 317, 882-886Google Scholar

  • [38] Brogden K.A., Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria?, Nat. Rev. Microbiol., 2005, 3, 238-250CrossrefGoogle Scholar

  • [39] Hancock R.E., Sahl H.G., Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies, Nat. Biotechnol., 2006, 24, 1551-1557CrossrefGoogle Scholar

  • [40] Lai Y., Gallo R.L., Amped up immunity: How antimicrobial peptides have multiple roles in immune defense, Trends Immunol., 2009, 30, 131-141CrossrefGoogle Scholar

  • [41] Choi K.Y., Chow L.N., Mookherjee N., Cationic host defence peptides: Multifaceted role in immune modulation and inflammation, J. Innate Immun., 2012, 4, 361-370Google Scholar

  • [42] Yang D., Chertov O., Bykovskaia S.N., Chen Q., Buffo M.J., Shogan J., et al., Beta-defensins: Linking innate and adaptive immunity through dendritic and T cell CCR6, Science, 1999, 286, 525-528Google Scholar

  • [43] Rohrl J., Yang D., Oppenheim J.J., Hehlgans T., Human beta-defensin 2 and 3 and their mouse orthologs induce chemotaxis through interaction with CCR2, J. Immunol., 2010, 184, 6688-6694Google Scholar

  • [44] De Y., Chen Q., Schmidt A.P., Anderson G.M., Wang J.M., Wooters J., et al., Ll-37, the neutrophil granule- and epithelial cell-derived cathelicidin, utilizes formyl peptide receptor-like 1 (FPRL1) as a receptor to chemoattract human peripheral blood neutrophils, monocytes, and T cells, J. Exp. Med., 2000, 192, 1069-1074Google Scholar

  • [45] Nagaoka I., Suzuki K., Murakami T., Niyonsaba F., Tamura H., Hirata M., Evaluation of the effect of alpha-defensin human neutrophil peptides on neutrophil apoptosis, Int. J. Mol. Med., 2010, 26, 925-934Google Scholar

  • [46] Nagaoka I., Niyonsaba F., Tsutsumi-Ishii Y., Tamura H., Hirata M., Evaluation of the effect of human beta-defensins on neutrophil apoptosis, Int. Immunol., 2008, 20, 543-553CrossrefGoogle Scholar

  • [47] Nagaoka I., Tamura H., Hirata M., An antimicrobial cathelicidin peptide, human CAP18/LL-37, suppresses neutrophil apoptosis via the activation of formyl-peptide receptor-like 1 and P2X7, J. Immunol., 2006, 176, 3044-3052Google Scholar

  • [48] Presicce P., Giannelli S., Taddeo A., Villa M.L., Della Bella S., Human defensins activate monocyte-derived dendritic cells, promote the production of proinflammatory cytokines, and up-regulate the surface expression of CD91, J. Leukoc. Biol., 2009, 86, 941-948Google Scholar

  • [49] Davidson D.J., Currie A.J., Reid G.S., Bowdish D.M., MacDonald K.L., Ma R.C., et al., The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization, J. Immunol., 2004, 172, 1146-1156Google Scholar

  • [50] Kin N.W., Chen Y., Stefanov E.K., Gallo R.L., Kearney J.F., Cathelin-related antimicrobial peptide differentially regulates T- and B-cell function, Eur. J. Immunol., 2011, 41, 3006-3016CrossrefGoogle Scholar

  • [51] Park H.J., Qin H., Cha S.C., Sharma R., Chung Y., Schluns K.S., et al., Induction of TLR4-dependent CD8+ T cell immunity by murine beta-defensin 2 fusion protein vaccines, Vaccine, 2011, 29, 3476-3482CrossrefGoogle Scholar

  • [52] Mookherjee N., Brown K.L., Bowdish D.M., Doria S., Falsafi R., Hokamp K., et al., Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37, J. Immunol., 2006, 176, 2455-2464Google Scholar

  • [53] Semple F., MacPherson H., Webb S., Cox S.L., Mallin L.J., Tyrrell C., et al., Human beta-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF, Eur. J. Immunol., 2011, 41, 3291-3300CrossrefGoogle Scholar

  • [54] Otero-Gonzalez A.J., Magalhaes B.S., Garcia-Villarino M., Lopez-Abarrategui C., Sousa D.A., Dias S.C., et al., Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control, FASEB J., 2010, 24, 1320-1334CrossrefGoogle Scholar

  • [55] Rajanbabu V., Pan C.Y., Lee S.C., Lin W.J., Lin C.C., Li C.L., et al., Tilapia hepcidin 2-3 peptide modulates lipopolysaccharide-induced cytokines and inhibits tumor necrosis factor-alpha through cyclooxygenase-2 and phosphodiesterase 4D, J. Biol. Chem., 2010, 285, 30577-30586Google Scholar

  • [56] Granadillo M., Vallespi M.G., Batte A., Mendoza O., Soria Y., Lugo V.M., et al., A novel fusion protein-based vaccine comprising a cell penetrating and immunostimulatory peptide linked to human papillomavirus (HPV) type 16 E7 antigen generates potent immunologic and anti-tumor responses in mice, Vaccine, 2011, 29, 920-930CrossrefGoogle Scholar

  • [57] Kindrachuk J., Jenssen H., Elliott M., Nijnik A., Magrangeas- Janot L., Pasupuleti M., et al., Manipulation of innate immunity by a bacterial secreted peptide: Lantibiotic nisin Z is selectively immunomodulatory, Innate Immun., 2013, 19, 315-327CrossrefGoogle Scholar

  • [58] Scott M.G., Dullaghan E., Mookherjee N., Glavas N., Waldbrook M., Thompson A., et al., An anti-infective peptide that selectively modulates the innate immune response, Nat. Biotech., 2007, 25, 465-472CrossrefGoogle Scholar

  • [59] Jenssen H., Hancock R.E., Therapeutic potential of HDPs as immunomodulatory agents, Methods Mol. Biol., 2010, 618, 329-347Google Scholar

  • [60] Hunter T.C., Andon N.L., Koller A., Yates J.R., Haynes P.A., The functional proteomics toolbox: Methods and applications, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002, 782, 165-181Google Scholar

  • [61] Righetti P.G., Castagna A., Antonioli P., Boschetti E., Prefractionation techniques in proteome analysis: The mining tools of the third millennium, Electrophoresis, 2005, 26, 297-319CrossrefGoogle Scholar

  • [62] Stegemann C., Hoffmann R., Sequence analysis of antimicrobial peptides by tandem mass spectrometry, Methods Mol. Biol., 2008, 494, 31-46Google Scholar

  • [63] Wang G., Wang Y., Ma D., Liu H., Li J., Zhang K., et al., Five novel antimicrobial peptides from the kuhl’s wart frog skin secretions, limnonectes kuhlii, Mol. Biol. Rep., 2013, 40, 1097-1102CrossrefGoogle Scholar

  • [64] Stegemann C., Kolobov A., Jr., Leonova Y.F., Knappe D., Shamova O., Ovchinnikova T.V., et al., Isolation, purification and de novo sequencing of TBD-1, the first beta-defensin from leukocytes of reptiles, Proteomics, 2009, 9, 1364-1373CrossrefGoogle Scholar

  • [65] Cash P., Proteomics of bacterial pathogens, Expert Opin. Drug Discov., 2008, 3, 461-473Google Scholar

  • [66] Mandal S.M., Migliolo L., Franco O.L., The use of MALDITOF- MS and in silico studies for determination of antimicrobial peptides’ affinity to bacterial cells, J. Am. Soc. Mass Spectrom., 2012, 23, 1939-1948Google Scholar

  • [67] Polcyn P., Zielinska P., Zimnicka M., Troc A., Kalicki P., Solecka J., et al., Novel antimicrobial peptide dendrimers with amphiphilic surface and their interactions with phospholipids - insights from mass spectrometry, Molecules, 2013, 18, 7120-7144CrossrefGoogle Scholar

  • [68] Peck S.C., Nuhse T.S., Hess D., Iglesias A., Meins F., Boller T., Directed proteomics identifies a plant-specific protein rapidly phosphorylated in response to bacterial and fungal elicitors, Plant Cell, 2001, 13, 1467-1475CrossrefGoogle Scholar

  • [69] Chopra S., Ramkissoon K., Anderson D.C., A systematic quantitative proteomic examination of multidrug resistance in acinetobacter baumannii, J. Proteomics, 2013, 84, 17-39CrossrefGoogle Scholar

  • [70] Huang T.C., Chen J.Y., Proteomic analysis reveals that pardaxin triggers apoptotic signaling pathways in human cervical carcinoma hela cells: Cross talk among the UPR, c-Jun and ROS, Carcinogenesis, (in press), doi: 10.1093/ carcin/bgt130CrossrefGoogle Scholar

  • [71] Marcellini L., Borro M., Gentile G., Rinaldi A.C., Stella L., Aimola P., et al., Esculentin-1b(1-18)--a membrane-active antimicrobial peptide that synergizes with antibiotics and modifies the expression level of a limited number of proteins in escherichia coli, FEBS J., 2009, 276, 5647-5664 Google Scholar

  • [72] Altelaar A.F., Heck A.J., Trends in ultrasensitive proteomics, Curr. Opin. Chem. Biol., 2012, 16, 206-213CrossrefGoogle Scholar

  • [73] Brunet S., Thibault P., Gagnon E., Kearney P., Bergeron J.J., Desjardins M., Organelle proteomics: Looking at less to see more, Trends Cell. Biol., 2003, 13, 629-638CrossrefGoogle Scholar

  • [74] Michelsen U., von Hagen J., Isolation of subcellular organelles and structures, Methods Enzymol., 2009, 463, 305-328Google Scholar

  • [75] Jung E., Heller M., Sanchez J.C., Hochstrasser D.F., Proteomics meets cell biology: The establishment of subcellular proteomes, Electrophoresis, 2000, 21, 3369-3377CrossrefGoogle Scholar

  • [76] Gauthier D.J., Lazure C., Complementary methods to assist subcellular fractionation in organellar proteomics, Expert Rev. Proteomics, 2008, 5, 603-617CrossrefGoogle Scholar

  • [77] Paulo J.A., Gaun A., Kadiyala V., Ghoulidi A., Banks P.A., Conwell D.L., et al., Subcellular fractionation enhances proteome coverage of pancreatic duct cells, Biochim. Biophys. Acta, 2013, 1834, 791-797Google Scholar

  • [78] Wu C.C., Howell K.E., Neville M.C., Yates J.R., 3rd, McManaman J.L., Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells, Electrophoresis, 2000, 21, 3470-3482Google Scholar

  • [79] Gagnon E., Duclos S., Rondeau C., Chevet E., Cameron P.H., Steele-Mortimer O., et al., Endoplasmic reticulummediated phagocytosis is a mechanism of entry into macrophages, Cell, 2002, 110, 119-131Google Scholar

  • [80] Palma J.M., Corpas F.J., del Rio L.A., Proteome of plant peroxisomes: New perspectives on the role of these organelles in cell biology, Proteomics, 2009, 9, 2301-2312CrossrefGoogle Scholar

  • [81] Desjardins M., Er-mediated phagocytosis: A new membrane for new functions, Nat. Rev. Immunol., 2003, 3, 280-291CrossrefGoogle Scholar

  • [82] Sant’Anna C., Nakayasu E.S., Pereira M.G., Lourenco D., de Souza W., Almeida I.C., et al., Subcellular proteomics of trypanosoma cruzi reservosomes, Proteomics, 2009, 9, 1782-1794CrossrefGoogle Scholar

  • [83] Shen C.J., Kuo T.Y., Lin C.C., Chow L.P., Chen W.J., Proteomic identification of membrane proteins regulating antimicrobial peptide resistance in vibrio parahaemolyticus, J. Appl. Microbiol., 2010, 108, 1398-1407Google Scholar

  • [84] Franzel B., Penkova M., Frese C., Metzler-Nolte N., Andreas Wolters D., Escherichia coli exhibits a membrane-related response to a small arginine- and tryptophan-rich antimicrobial peptide, Proteomics, 2012, 12, 2319-2330CrossrefGoogle Scholar

  • [85] Pieper R., Gatlin-Bunai C.L., Mongodin E.F., Parmar P.P., Huang S.T., Clark D.J., et al., Comparative proteomic analysis of staphylococcus aureus strains with differences in resistance to the cell wall-targeting antibiotic vancomycin, Proteomics, 2006, 6, 4246-4258CrossrefGoogle Scholar

  • [86] Wenzel M., Kohl B., Munch D., Raatschen N., Albada H.B., Hamoen L., et al., Proteomic response of bacillus subtilis to lantibiotics reflects differences in interaction with the cytoplasmic membrane, Antimicrob. Agents Chemother., 2012, 56, 5749-5757CrossrefGoogle Scholar

  • [87] Zhou Y., Chen W.N., iTRAQ-coupled 2-D LC-MS/MS analysis of cytoplasmic protein profile in escherichia coli incubated with apidaecin Ib, J. Proteomics, 2011, 75, 511-516CrossrefGoogle Scholar

  • [88] Huang T.C., Chen J.Y., Proteomic and functional analysis of zebrafish after administration of antimicrobial peptide epinecidin-1, Fish Shellfish Immunol, 2013, 34, 593-598Google Scholar

  • [89] Yu H.B., Kielczewska A., Rozek A., Takenaka S., Li Y., Thorson L., et al., Sequestosome-1/p62 is the key intracellular target of innate defense regulator peptide, J. Biol. Chem., 2009, 284, 36007-36011 Google Scholar

  • [90] Ponpuak M., Deretic V., Autophagy and p62/sequestosome 1 generate neo-antimicrobial peptides (cryptides) from cytosolic proteins, Autophagy, 2011, 7, 336-337CrossrefGoogle Scholar

  • [91] Mookherjee N., Lippert D.N., Hamill P., Falsafi R., Nijnik A., Kindrachuk J., et al., Intracellular receptor for human host defense peptide ll-37 in monocytes, J. Immunol., 2009, 183, 2688-2696Google Scholar

  • [92] Turner-Brannen E., Choi K.Y., Lippert D.N., Cortens J.P., Hancock R.E., El-Gabalawy H., et al., Modulation of interleukin-1beta-induced inflammatory responses by a synthetic cationic innate defence regulator peptide, idr-1002, in synovial fibroblasts, Arthritis Res. Ther., 2011, 13, R129 Google Scholar

About the article

Received: 2013-05-22

Accepted: 2013-07-25

Published Online: 2013-08-13

Published in Print: 2014-01-01


Citation Information: Organelles Proteomics, Volume 1, Issue 1, ISSN (Online) 2084-722X, DOI: https://doi.org/10.2478/orpr-2013-0003.

Export Citation

© 2013 Carlos López-Abarrategui, Anselmo J. Otero-González . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in