Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Organelles Proteomics

Emerging Science

Open Access
See all formats and pricing
More options …

A New Method for Proteome Screening with Two-Dimensional Urea-Sds Polyacrylamide Gel Electrophoresis

Areeba Ahmad
  • Biochemical and Clinical Genetics Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202 002 (U.P), India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Riaz Ahmad
  • Corresponding author
  • Biochemical and Clinical Genetics Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh-202 002 (U.P), India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-04-28 | DOI: https://doi.org/10.2478/orpr-2014-0001


Two-dimensional gel electrophoresis (2DE) separating proteins on the basis of their pI and molecular mass remain the best available technique for protein separation and characterization to date. But due to several limitations, including streak formation in IEF gels, partial solubility of proteins, expensive running conditions and relatively longer time taken, a simple urea-SDS-2D polyacrylamide gel electrophoresis (US2DE) is described here. The system is reasonably sensitive, cost effective with good reproducibility. The method described in this paper employs a chaotropic agent, urea, in the first dimension and sodium dodecyl sulphate (SDS), like conventional system, in the second dimension with an addition of polyacrylamide to screen the liver proteome of healthy and chemically induced fibrotic rats. The system separates the protein on the basis of chargeto- mass ratio and clearly demonstrates differential expression in the liver protein repertoire of healthy and fibrotic rats. Moreover, the present system, like other 2D electrophoretic procedures revealed at least 22 novel spots in the investigated tissues. The technique may be utilized for comprehensive proteome screening of any biological sample and would provide an overview to narrow down the candidate proteins or biomarkers.

Keywords : Urea-SDS-Two dimensional electrophoresis; Liver proteome; Hepatic Fibrosis; Native PAGE; Isoelectric focusing


  • [1] Ahmad A., Fatima R., Maheshwari V., Ahmad R., Effect of N′-nitrosodimethylamine on red blood cell rheology and proteomic profiles of brain in male albino rats, Interdiscip. Toxicol., 2011, 4, 125−131.PubMedGoogle Scholar

  • [2] Ahmad A., Ahmad R., Understanding the mechanism of hepatic fibrosis and potential therapeutic approaches, Saudi J. Gastroenterol., 2012, 18, 155-167.Web of ScienceGoogle Scholar

  • [3] O‘Farrell P.H., High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem., 1975, 250, 4007-4021.Google Scholar

  • [4] O‘Farrell P.Z., Goodman H.M., O‘Farrell P.H., High resolution two-dimensional electrophoresis of basic as well as acidic proteins, Cell, 1977, 12 (4), 1133-1142.CrossrefGoogle Scholar

  • [5] Gorg A., Postel W., Gunther S., The current state of two-dimensional electrophoresis with immobilized pH gradients, Electrophoresis, 1988, 9, 531-546.CrossrefPubMedGoogle Scholar

  • [6] Ahmad R., Ahmed S., Khan N.U., Hasnain A., Operculina turpethum attenuates N′-nitrosodimethylamine induced toxic liver injury and clastogenicity in rats, Chem. Biol. Interac., 2009, 181, 145-153.Web of ScienceGoogle Scholar

  • [7] Ahmad A., Afroz A., Gupta U.D., Ahmad R., Vitamin B12 supplement alleviates N′-nitrosodimethylamine-induced hepatic fibrosis in rats, Pharm. Biol., 2014, 52(4), 516-523.Web of ScienceCrossrefGoogle Scholar

  • [8] Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J., Protein measurement with Folin phenol reagent. J. Biol. Chem., 1951, 193, 265-275.Google Scholar

  • [9] Laemmli U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, 227, 680-685.Google Scholar

  • [10] Nesterenko M.V., Tilley M., Upton S.J., A simple modification of Blum’s silver staining method allows for 30 minutes detection of proteins in polyacrylamide gels, J. Biochem. Biophys. Methods, 1994, 28(3), 239-242.Google Scholar

  • [11] Ahmad A., Maheshwari V., Ahmad A., Saleem R., Ahmad R., Observation of esterase-like-albumin activity during N′-Nitrosodimethyl amine induced hepatic fibrosis in a mammalian model, Maced. J. Med. Sci., 2012, 5(1), 55−61.CrossrefGoogle Scholar

  • [12] Gorg A., Obermaier C., Boguth G., Harder A., Scheibe B., Wildgruber R., et al., The current state of two-dimensional electrophoresis with immobilized pH gradients, Electrophoresis, 2000, 21, 1037-1053.PubMedCrossrefGoogle Scholar

  • [13] Charneau S., Cruz G.C.N., Costa C.M., Effect of Triton X-100 and DTT concentrations on wide range two-dimensional gel electrophoresis of tissue, cell and fluid proteomes, Organelles Proteomics, 2013, 2−6, DOI: 10.2478/orpr-2013-0002.CrossrefGoogle Scholar

  • [14] Rath A, Glibowicka M, Nadeau V.G., Chen G, Deber C.M., Detergent binding explains anomalous SDS-PAGE migration of membrane proteins, Proc. Nat. Acad. Sci., 2009, 106 (6), 1760-1765.CrossrefGoogle Scholar

  • [15] Lauriere M., Mosse J., Polyacrylamide gel-urea electrophoresis of cereal prolamins at acidic pH, Anal. Biochem., 1982, 122, 20−25.Google Scholar

  • [16] Fling S.P., Gregerson D.S., Peptide and protein molecular weight determination by electrophoresis using a high-molarity tris buffer system without urea, Anal. Biochem., 1986, 155, 83−88.Google Scholar

  • [17] Zou Q., Habermann-Rottinghaus S.M., Murphy K.P., Urea effects on protein stability: hydrogen bonding and hydrophobic effects, Proteins, 1998, 31 (2), 107−115.CrossrefGoogle Scholar

  • [18] Low T.Y., Leow C.K., Salto-Tellez M., Chung M.C.M., A proteomic analysis of thioacetamide-induced hepatotoxicity and cirrhosis in rat livers, Proteomics, 2004, 4, 3960-3974.CrossrefGoogle Scholar

  • [19] Hochstrasser D.F., Harrington M.G., Hochstrasser A.C., Miller M.J., Merril C.R., Methods for increasing the resolution of two-dimensional protein electrophoresis, Anal. Biochem., 1988, 173 (2), 424−435.CrossrefPubMedGoogle Scholar

  • [20] Herbert B., Advances in protein solubilisation for two-dimensional electrophoresis, Electrophoresis, 1999, 20 (4-5), 660−663. CrossrefPubMedGoogle Scholar

  • [21] Egito A.S., Girardet J.M., Miclo L., Gaillard J.L., Highly sensitive periodic acid/ Schiff detection of bovine milk glycoproteins electrotransferred after nondenaturing electrophoresis, urea electrophoresis, and isoelectric focusing, Liat, 2001, 81, 775−785.Google Scholar

  • [22] Klose J., Kobalz U., Two-dimensional electrophoresis of proteins: An updated protocol and implications for a functional analysis of the genome, Electrophoresis, 1995, 16, 1034−1059.CrossrefPubMedGoogle Scholar

  • [23] O’Connell K.L., Stults J.T., Identification of mouse liver proteins on two-dimensional electrophoresis gels by matrix-assisted laser desorption/ionization mass spectrometry of in situ enzymatic digests, Electrophoresis, 1997, 18 (3−4), 349−359. CrossrefGoogle Scholar

About the article

Received: 2014-01-20

Accepted: 2014-04-24

Published Online: 2014-04-28

Published in Print: 2014-01-01

Citation Information: Organelles Proteomics, Volume 1, Issue 1, ISSN (Online) 2084-722X, DOI: https://doi.org/10.2478/orpr-2014-0001.

Export Citation

© 2014 Areeba Ahmad, Riaz Ahmad . This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in