Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Organelles Proteomics


Emerging Science

Open Access
Online
ISSN
2084-722X
See all formats and pricing
More options …

MitoProteomics: New Insights in Infection Biology

Santi M. Mandal / Amit K. Mandal / Keshab C. Mondal / Bikas R. Pati
Published Online: 2014-11-12 | DOI: https://doi.org/10.2478/orpr-2014-0002

Abstract

Mitochondria are the organelles as central hubs of energy production, apoptosis regulation, and Ca++ signaling, therefore prime targets of pathogens to destroy the signaling network as earliest for their survivability. Recently, several proteomics approaches have been undertaken for rapid identification and analyses of disease manifestation in infection biology. Here, we have summarized the mostly popular topdown proteomics approaches including methodology to available database for mitochondrial signaling network analyses during host-pathogen interaction and a key tool for rapid biomarker identification.

Keywords : Infection biology; MitoProteomics; tandem mass spectrometry; top-down proteomics

References

  • [1] Shadel G.S., Clayton D.A., Mitochondrial DNA maintenance in vertebrates, Annu. Rev. Biochem., 1997, 66, 409–435. Google Scholar

  • [2] Shoubridge E.A., The ABcs of mitochondrial transcription, Nat. Genet., 2002, 31, 227–228. PubMedCrossrefGoogle Scholar

  • [3] Neupert W., Herrmann J.M., Translocation of proteins into mitochondria, Annu. Rev. Biochem., 2007, 76, 723–749. Web of ScienceGoogle Scholar

  • [4] Chacinska A., Koehler C.M., Milenkovic D., Lithgow T., Pfanner N., Importing mitochondrial proteins: machineries and mechanisms, Cell, 2009, 138, 628–644. Web of ScienceGoogle Scholar

  • [5] Ernster L, Schatz G., Mitochondria: a historical review, J. Cell Biol., 1981, 91, 227 –255. Google Scholar

  • [6] Ohta, A., Nishiyama, Y. Mitochondria and viruses, Mitochondrion, 2011, 11, 1–12. PubMedCrossrefWeb of ScienceGoogle Scholar

  • [7] Hoye A.T, Davoren J.E, Wipf P., Fink M.P., Kagan V.E., Targeting mitochondria, Acc. Chem. Res., 2008, 41, 87-97. Google Scholar

  • [8] Berdanier C.D., Introduction to Mitochondria, In: Berdanier C.D. (Ed.), Mitochondria in Health and Diseases, CRC Press, Boca Raton, 2005. Google Scholar

  • [9] Taylor S.W., Fahy E., Bing Z., Glenn G.M., Warnock D.E., Wiley S., et al., Characterization of the human heart mitochondrial proteome, Nat. Biotech., 2003, 21, 281 - 286. CrossrefGoogle Scholar

  • [10] Cotter D., Guda P., Fahy E., Sumbramaniam S., MitoProteome: Mitochondrial Protein Sequence Database and Annotation System, Nuc. Acids Res., 2004, 32, D463-D467. CrossrefGoogle Scholar

  • [11] Armirotti A, Damonte G., Achievements and perspectives of top-down proteomics, Proteomics, 2010, 10, 3566–3576. PubMedCrossrefGoogle Scholar

  • [12] Kellie J.F., Catherman A.D., Durbin K.R., Tran J.C., Tipton J.D., Norris J.L., et al., Robust analysis of the yeast proteome under 50 kDa by molecular-mass-based fractionation and top-down mass spectrometry, Anal. Chem., 2012, 84, 209-215. Google Scholar

  • [13] Tran J.C., Zamdborg L., Ahlf D.R., Lee J.E., Catherman A.D., Durbin K.R., et al., Mapping intact protein isoforms in discovery mode using top-down proteomics, Nature, 2011, 480, 254-258. Web of ScienceGoogle Scholar

  • [14] Fields S., Proteomics - proteomics in genomeland, Science, 2001, 291, 1221–1224. Google Scholar

  • [15] Mann M., Jensen O.N., Proteomic analysis of post-translational modifications, Nat. Biotechnol., 2003, 21, 255–261. CrossrefPubMedGoogle Scholar

  • [16] Luft R., The development of mitochondrial medicine, Proc. Natl. Acad. Sci., 1994, 91, 8731-8738. Google Scholar

  • [17] Jamwal S., Midha M.K., Verma H.N., Basu A., Rao K.V., Manivel V., Characterizing virulence-specific perturbations in the mitochondrial function of macrophages infected with Mycobacterium tuberculosis, Sci. Report, 2013, 3, DOI 1328.10.1038/srep01328. CrossrefGoogle Scholar

  • [18] Carneiro, L.A.M., Travassos L.H., Soares F., Tattoli I, Magalhaes, J.G., Bozza, M.T., et al., Shigella Induces Mitochondrial Dysfunction and Cell Death in Nonmyleoid Cells, Cell Host Microbe., 2009, 5, 123-136. CrossrefWeb of ScienceGoogle Scholar

  • [19] Ray A., Martinez B.A., Berkowitz L.A., Caldwell G.A., Caldwell, K.A., Mitochondrial dysfunction, oxidative stress, and neurodegeneration elicited by a bacterial metabolite in a C. elegans Parkinson’s model, Cell Death. Dis., 2014, 5: e984. CrossrefWeb of ScienceGoogle Scholar

  • [20] Kim Y.R., Lee S.E., Kang In-Chol., Nam K II, Choy, H.E., Rhee, J.H., Bacterial RTX Toxin Causes Programmed Necrotic Cell Death Through Calcium-Mediated Mitochondrial Dysfunction, J. Infect. Dis., 2013, 207, 1406–15. Web of ScienceGoogle Scholar

  • [21] Murata T., Goshima F., Daikoku T., Inagaki-Ohara K., Takakuwa H., Kato K., et al., Mitochondrial distribution and function in herpes simplex virus-infected cells, J. Gen. Virol., 2000, 81, 401–406. Google Scholar

  • [22] Zhang A., Williamson C.D., Wong D.S., Bullough M.D., Brown K.J., Hathout Y., et al., Quantitative proteomic analyses of human cytomegalovirus-induced restructuring of endoplasmic reticulum-mitochondrial contacts at late times of infection. Mol. Cell. Proteomics, 2011, 10 (10), DOI: 10.1074/mcp. M111.009936 Web of ScienceCrossrefGoogle Scholar

  • [23] Ichinohe T., Yamazaki T., Koshiba T., Yanagi Y., Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection, Proc. Natl. Acad. Sci., 2013, 110, 44, 17963-17968. Google Scholar

  • [24] Rojo G., Chamorro M., Salas M.L., Vinuela E., Cuezva J.M., Salas J., Migration of mitochondria to viral assembly sites in African swine fever virus-infected cells, J. Virol., 1998, 72, 7583–7588. Google Scholar

  • [25] Kramer T., Enquist L.W., Alphaherpesvirus infection disrupts mitochondrial transport in neurons, Cell Host Microbe., 2012, 11, 504–514. Web of SciencePubMedCrossrefGoogle Scholar

  • [26] Deng L., Adachi T, Kitayama K., Bungyoku Y., Kitazawa S., Ishido S., et al., Hepatitis C Virus infection induces apoptosis through a Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway, J. Virol., 2008, 82, 10375–10385. Google Scholar

  • [27] Kim S.-J.,, Syed G.H., Khan M., Chiu W.-W., Sohail M.A., Gish R.G., Siddiqui A., Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence, Proc. Natl. Acad. Sci., 2014, 111, 6413-6418. CrossrefGoogle Scholar

  • [28] Shen X.L., Zhang Y., Xu W., Liang R., Zheng J., Luo Y., Wang Y., Huang K. An iTRAQ-based mitoproteomics approach for profiling the nephrotoxicity mechanisms of ochratoxin A in HEK293 cells, J. Proteomics, 2013, 78, 398-415. Web of ScienceGoogle Scholar

  • [29] Gatto L., Vizcaino J.A, Hermjakob H., Huber W, Lilley K.S. Organelle proteomics experimental designs and analysis, Proteomics, 2010, 10, 1–13. Web of ScienceGoogle Scholar

  • [30] Lilley K.S., Dupree P., Methods of quantitative proteomics and their application to plant organelle characterization, J. Exp. Bot., 2006, 57, 1493–1499.Google Scholar

About the article

Received: 2014-06-08

Accepted: 2014-08-08

Published Online: 2014-11-12


Citation Information: Organelles Proteomics, ISSN (Online) 2084-722X, DOI: https://doi.org/10.2478/orpr-2014-0002.

Export Citation

© 2014 Santi M. Mandal et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in