Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Organization, Technology and Management in Construction: an International Journal

Co-published with University of Zagreb, Faculty of Civil Engineering

1 Issue per year

Open Access
See all formats and pricing
More options …

Sixty years of project planning: history and future

M. Hajdu / S. Isaac
Published Online: 2017-03-14 | DOI: https://doi.org/10.1515/otmcj-2016-0013


Modern project management owes its reputation to the development of modern scheduling techniques based on the theory of graphs, namely, network scheduling techniques. In 2017, these techniques are celebrating their 60th birthday. This anniversary provides the opportunity to look back at the most important achievements such as non-linear activities and new precedence relations, as well as to take a look into the future. The highlights of this subjective retrospective are the presentation of the latest results and the compilation of those problems that will probably define the priorities for future research. This paper is the extended version of the keynote lecture/ presentation that has been presented at the PBE 2016 Conference (People, Buildings and Environment, Luhačovice, Czech Republic) (Hajdu 2016a).

Keywords: network scheduling; Critical Path Method; PERT; Precedence Diagramming Method; continuous precedence relations; non-linear activities; logical switches


  • Adlakha, V. G. (1989). A classified bibliography of research on stochastic PERT networks: 1966-1987. Information Systems and Operational Research, 27(3), pp. 272-296.Google Scholar

  • Clark, C. E. (1961). The greatest of a finite set of random variables. Operations Research, 9, pp. 145-162.CrossrefGoogle Scholar

  • Clark, C. E. (1962). The PERT model for the distribution of an activity time. Operations Research, 10, pp. 405-406.CrossrefGoogle Scholar

  • Crandall, K., & Hajdu, M. (1994). A CPM költségtervezési feladat “legrosszabb” megoldása. Közlekedéstudományi szemle, 44(5), pp. 173-176. (In Hungrian).Google Scholar

  • Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton University Press, Princeton, NJ.Google Scholar

  • de Leon, G. P. (2008). Graphical Planning method. In: PMICOS Annual Conference, Chicago, IL.Google Scholar

  • Dinic, E. A. (1990). The fastest algorithm for the PERT problem with AND- and OR-nodes (the new product-new technology problem). In: Kannan, R., & Pulleyblank, W. R. (eds.). Proceedings of the International Conference on Integer Programming and Combinatorial Optimization. University of Waterloo Press, Waterloo, ON, Canada, pp. 185-187.Google Scholar

  • Dodin, B. M. (1985a). Bounding the project completion time distribution in PERT networks. Operations Research, 33, pp. 862-881.CrossrefGoogle Scholar

  • Dodin, B. M. (1985b). Approximating the distribution functions in stochastic networks. Computers & Operations Research, 12(3), pp. 251-264.Google Scholar

  • Elmaghraby, S. E. (1989). The estimation of some network parameters in PERT model of activity networks: Review and critique. In: Slowinski, R., & Weglarz J. (eds.). Advances in Project Scheduling. Elsevier, Amsterdam, pp. 371-432.Google Scholar

  • Farnum, N. R., & Stanton, L. W. (1987). Some results concerning the estimation of beta distribution parameters in PERT. Journal of the Operations Research Society, 38, pp. 287-290.Google Scholar

  • Fondahl, J. W. (1961). A Non-Computer Approach to the Critical Path Method for the Construction Industry, Technical Report #9. Department of Civil Engineering, Stanford University, Stanford, CA.Google Scholar

  • Fondahl, J. W. (1987). The history of modern project management: Precedence diagramming method: Origins and early developments. Project Management Journal, 18(2), pp. 33-36.Google Scholar

  • Francis, A., & Miresco, E. T. (2000). Decision support for project management using a chronographic approach. In: Proceedings of the 2nd International Conference on Decision Making in Urban and Civil Engineering Grand Hôtel Mercure Saxe-Lafayette, 20-22 November 2000, Lyon, France, pp. 845-856. Published jointly by INSA-Lyon, ESIGEC Chambery, ENTPE-Lyon and ETS Canada. [ISBN 2868341179].Google Scholar

  • Francis, A., & Miresco, E. T. (2002). Decision support for project management using a chronographic approach. Journal of Decision Systems, 11(3-4), pp. 383-404.Google Scholar

  • Fulkerson, D. R. (1961). A network flow computation for project cost curves. Management Science, 7(2), pp. 167-178.CrossrefGoogle Scholar

  • Gillies, D. W. (1993). Algorithms to schedule tasks with AND/ OR precedence constraints. PhD thesis, Department of Computer Science, University of Illinois at Urbana- Champaign, Urbana, IL.Google Scholar

  • Hahn, E. D. (2008). Mixture densities for project management activity times: A robust approach to PERT. European Journal of Operational Research, 188, pp. 450-459.CrossrefGoogle Scholar

  • Hajdu, M. (1993). An algorithm for solving the cost optimization problem in precedence diagramming. Periodica Politechnica Civil Engineering, 37(3), pp. 231-247.Google Scholar

  • Hajdu, M. (1997). Network Scheduling Techniques for Construction Project Management. Kluwer Academic Publishers, Dordrecht, London, New York. 352 p. [ISBN:0-7923-4309-3].Google Scholar

  • Hajdu, M. (2013). Effects of the application of activity calendars in PERT networks. Automation in Construction, 35, pp. 397-404.Google Scholar

  • Hajdu, M. (2015a). One relation to rule them all: The point-to-point precedence relation that substitutes the existing ones. In: Froese, T. M., Newton, L., Sadeghpour, F., & Vanier, D. J. (eds.). Proceedings of ICSC15: The Canadian Society for Civil Engineering 5th International/11th Construction Specialty Conference. 7-10 June. University of British Columbia, Vancouver, BC, Canada. doi:CrossrefGoogle Scholar

  • Hajdu, M. (2015b). History and some latest development of precedence diagramming method. Organization, Technology and Management in Construction: An International Journal, 7(2), pp. 1302-1314. doi:CrossrefGoogle Scholar

  • Hajdu, M. (2015c). Continuous precedence relations for better modelling overlapping activities. Procedia Engineering, 123, pp. 216-223. doi:CrossrefGoogle Scholar

  • Hajdu, M. (2015d). Precedence diagramming method: Some latest developments. In: Keynote Presentation on the Creative Construction Conference, 21-24 June, 2015. Krakow, Poland.Google Scholar

  • Hajdu, M. (2016a). Sixty years of project planning: History and future. In: Conference Proceedings of People, Buildings and Environment 2016, An International Scientific Conference, Luhačovice, Czech Republic, pp. 230-242. Brno University of Technology, Faculty of Civil Engineering, Brno, Czech Republic [ISSN: 1805-6784].Google Scholar

  • Hajdu, M. (2016b). PDM time analysis with continuous and point-to-point relations: Calculations using an artificial example. Procedia Engineering, 164, pp. 57-67. doi:CrossrefGoogle Scholar

  • Hindealng, T. J., & Muth, J. F. (1979). A dynamic programming algorithm for decision CPM networks. Operations Research, 27(2), pp. 225-241.CrossrefGoogle Scholar

  • IBM. (1964). Users’ Manual for IBM 1440 Project Control System (PCS).Google Scholar

  • Johnson, D. (1997). The triangular distribution as a proxy for the beta distribution in risk analysis. Journal of the Royal Statistical Society: Series D (The Statistician), 46, pp. 387-398. doi:CrossrefGoogle Scholar

  • Kamburowski, J. (1992). Bounding the distribution of project duration in PERT networks. Operations Research Letters, 12(1), pp. 17-22.CrossrefGoogle Scholar

  • Kamburowski, J. (1997). New validations of PERT times. Omega, 25(3), pp. 323-328.Google Scholar

  • Keefer, D. L., & Bodily, S. E. (1983). Three-point approximations for continuous random variables. Management Science, 29(5), pp. 595-609.CrossrefGoogle Scholar

  • Kelley, J. E. (1961). Critical path planning and scheduling: Mathematical basis. Operations Research, 9(3), pp. 296-320.CrossrefGoogle Scholar

  • Kelley, J. E. (1989). The origins of CPM: A personal history. PM Network, III(2) PMI: USA.Google Scholar

  • Kelley, J. E., & Walker, M. E. (1959). Critical path planning and scheduling. In: Proceedings of the Eastern Joint Computer Conference, 1-3 December 1959 Boston, MA, pp. 160-173.Google Scholar

  • Kim, S. (2010). Advanced Networking Technique. Kimoondang, South Korea.Google Scholar

  • Kim, S. (2012). CPM schedule summarizing function of the beeline diagramming method. Journal of Asian Architecture and Building Engineering, 11(2), pp. 367-374.Google Scholar

  • Klafszky, E. (1969). Hálózati folyamok (Network Flows). Bolyai Jáns Mathematical Society Akadémiai Kiadó, Budapest.Google Scholar

  • Kotiah, T. C. T., & Wallace, N. D. (1973). Another look at the PERT asssumptions. Management Science, 20(3-4), pp. 44-49.CrossrefGoogle Scholar

  • Krishnamoorty, M. S., & Deon, N. (1979). Complexity of minimum-dummy-activities problem in a PERT Network. Networks, 9. pp. 189-194.CrossrefGoogle Scholar

  • Lucko, G. (2009). Productivity Scheduling Method: Linear schedule analysis with singularity functions. Journal of Construction Engineering and Management, 135(4), pp. 246-253.Google Scholar

  • Malcolm, D. G., Roseboom, J. H., Clark, C. E., & Fazar W. (1959). Application of a technique for a research and development program evaluation. Operations Research, 7, pp. 646-669.CrossrefGoogle Scholar

  • Malyusz, L., & Hajdu, M. (2009). How would you like it? Shorter or cheaper? Organization Technology and Management in Construction, 1(2), pp. 59-63.Google Scholar

  • Massay, R. S. (1963). Program evaluation review technique: Its origins and development. Master’s thesis, The American University, Washington, DC.Google Scholar

  • Meyer, W. L., & Shaffer, L. R. (1963). Extension of the Critical Path Method Through the Application of Integer Programming, Technical Report. Department of Civil Engineering, University of Illinois, Urbana, IL.Google Scholar

  • Mohan, S., Gopalakrishnan, M., Balasubramanian, H., & Chandrashekar, A. (2007). A lognormal approximation of activity duration in PERT using two time estimates. Journal of the Operational Research Society, 58, pp. 827-831.Google Scholar

  • Möhring, R. H., Skutella, M., & Stork, F. (2004). Scheduling with and/or precedence constraints. SIAM Journal on Computing, 33(2), pp. 393-415.CrossrefGoogle Scholar

  • Plotnick, FL. (2004). Introduction to modified sequence logic. In: Conference Proceedings, PMICOS Conference, April 25, 2004, Montreal, QC.Google Scholar

  • Premachandra, I. M., & Gonzales, L. (1996). A simulation model solved the problem of scheduling drilling rigs at Clyde dam. Interfaces, 26(2), pp. 80-91.CrossrefGoogle Scholar

  • Roy, G. B. (1959), Théorie des Graphes: Contribution de la théorie des graphes á l1 étude de certains problémes linéaries. In: Comptes rendus des Séances de l1 Acedémie des Sciences. séence du Avril, Gauthier-Villars, 1959, pp. 2437-2449.Google Scholar

  • Roy, G. B. (1960), Contribution de la théorie des graphes a l’étude de certains problems d’ordonnancement. In: Comptes rendus de la 2ème conférence internationale sur la recherché opérationnelle, Aix-en-Provence. English Universities Press, Londres, pp. 171-185.Google Scholar

  • Sasieni, M. W. (1986). A note on PERT times. Management Science, 32, pp. 405-406.CrossrefGoogle Scholar

  • Schwindt, C., & Zimmermann, J. (2015). Handbook on Project Management and Scheduling. Springer, Switzerland (ISBN 978-3-319-05442-1).Google Scholar

  • Siemens, N. (1971). A simple time-cost trade-off algorithm. Management Science, 17(6), pp. 354-363.CrossrefGoogle Scholar

  • Trietsch, D., Mazmanyan, L., Gevorgyan, L., & Baker, K. R. (2012). Modeling activity times by the Parkinson distribution with a lognormal core: Theory and validation. European Journal of Operations Research, 216(2), pp. 386-396.CrossrefGoogle Scholar

  • Van Slyke, R. M. (1963). Monte Carlo methods and the PERT problem. Operational Research, 11, pp. 839-861.Google Scholar

  • Vanhoucke, M., & Coelho, J. (2016). An approach using SAT solvers for the RCPSP with logical constraints. European Journal of Operations Research, 249(2), pp. 577-591.CrossrefGoogle Scholar

  • Yao, M., & Chu, W. (2007). A new approximation algorithm for obtaining the probability distribution function for project completion time. Computers and Mathematics with Applications, 54, pp. 282-295.Google Scholar

About the article

Received: 2016-10-16

Accepted: 2016-11-28

Published Online: 2017-03-14

Published in Print: 2016-12-01

Citation Information: Organization, Technology and Management in Construction: an International Journal, Volume 8, Issue 1, Pages 1499–1510, ISSN (Online) 1847-6228, DOI: https://doi.org/10.1515/otmcj-2016-0013.

Export Citation

© 2017. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in