Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Organization, Technology and Management in Construction: an International Journal

Co-published with University of Zagreb, Faculty of Civil Engineering

1 Issue per year

Open Access
Online
ISSN
1847-6228
See all formats and pricing
More options …

An integration of spreadsheet and project management software for cost optimal time scheduling in construction

Tadej Valenko
  • University of Maribor, Faculty of Civil Engineering, Transportation Engineering and Architecture, Smetanova ulica 17, 2000 Maribor, Slovenia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Uroš Klanšek
  • Corresponding author
  • University of Maribor, Faculty of Civil Engineering, Transportation Engineering and Architecture, Smetanova ulica 17, 2000 Maribor, Slovenia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-29 | DOI: https://doi.org/10.1515/otmcj-2016-0028

Abstract

Successful performance and completion of construction projects highly depend on an adequate time scheduling of the project activities. On implementation of time scheduling, the execution modes of activities are most often required to be set in a manner that enables in achieving the minimum total project cost. This paper presents an approach to cost optimal time scheduling, which integrates a spreadsheet application and data transfer to project management software (PMS). At this point, the optimization problem of project time scheduling is modelled employing Microsoft Excel and solved to optimality using Solver while organization of data is dealt by macros. Thereupon, Microsoft Project software is utilized for further managing and presentation of optimized time scheduling solution. In this way, the data flow between programs is automated and possibilities of error occurrence during scheduling process are reduced to a minimum. Moreover, integration of spreadsheet and PMS for cost optimal time scheduling in construction is performed within well-known program environment that increases the possibilities of its wider use in practice. An application example is shown in this paper to demonstrate the advantages of proposed approach.

Keywords: optimization; project scheduling; spreadsheet application; project management software

References

  • Adeli, H., & Karim, A. (1997). Scheduling/cost optimization and neural dynamics model for construction. Journal of Construction Engineering and Management, 123(4), pp. 450-458. doi:CrossrefGoogle Scholar

  • Al Haj, R., & El-Sayegh, S. (2015). Time-cost optimization model considering float-consumption Impact. Journal of Construction Engineering and Management, 141(5), 04015001. doi:CrossrefGoogle Scholar

  • Biafore, B. (2013). Microsoft Project 2013: The Missing Manual. O’Reilly Media, Sebastopol, CA. Google Scholar

  • Crnković, D., & Vukomanović, M. (2016). Comparison of trends in risk management theory and practices within the construction industry. E-GFOS, 7(13), pp. 1-11. doi:CrossrefWeb of ScienceGoogle Scholar

  • Eshtehardian, E., Afshar, A., & Abbasnia, R. (2009). Fuzzy-based MOGA approach to stochastic time-cost trade-off problem. Automation in Construction, 18(5), pp. 692-701. doi:CrossrefWeb of ScienceGoogle Scholar

  • Ezeldin, A. S., & Soliman, A. (2009). Hybrid time-cost optimization of nonserial repetitive construction projects. Journal of Construction Engineering and Management, 135(1), pp. 42-55. doi:CrossrefWeb of ScienceGoogle Scholar

  • Frontline Systems. (2017). Frontline Solvers Optimization and Simulation User Guide. Available at https://www.solver.com/user-guides-frontline-systems-excel-solvers/ on 07 November, 2017). Google Scholar

  • Galić, M., Završki, I., & Dolaček-Alduk, Z. (2016a). Scenario simulation model for optimized allocation of construction machinery. Građevinar, 68(2), pp. 105-112. doi:CrossrefWeb of ScienceGoogle Scholar

  • Galić, M., Završki, I., & Dolaček-Alduk, Z. (2016b). Methodology and algorithm for asphalt supply chain optimization. Tehnicki Vjesnik-Technical Gazette, 23(4), pp. 1193-1200. doi:CrossrefGoogle Scholar

  • Galić, M., Barišić, I., & Ištoka Otković, I. (2017). Route reliability based simulation model for HMA delivery in urban areas. Procedia Engineering, 187, pp. 378-386. doi:CrossrefGoogle Scholar

  • Geem, Z. W. (2010). Multiobjective optimization of time-cost trade-off using harmony search. Journal of Construction Engineering and Management, 136(6), pp. 711-716. doi:CrossrefWeb of ScienceGoogle Scholar

  • Harris, P. E. (2016). Planning and Control Using Microsoft Project 2013 and 2016. Eastwood Harris Pty Ltd, Doncaster Heights, VIC. Google Scholar

  • Hazir, Ö., Haouari, M., & Erel, E. (2010). Robust scheduling and robustness measures for the discrete time/cost trade-off problem. European Journal of Operational Research, 207(2), pp. 633-643. doi:CrossrefWeb of ScienceGoogle Scholar

  • Hazir, Ö., Erel, E., & Günalay, Y. (2011). Robust optimization models for the discrete time/cost trade-off problem. International Journal of Production Economics, 130(1), pp. 87-95. doi:CrossrefWeb of ScienceGoogle Scholar

  • He, Z., Wang, N., Jia, T., & Xu, Y. (2009). Simulated annealing and tabu search for multi-mode project payment scheduling. European Journal of Operational Research, 198(3), pp. 688-696. doi:CrossrefWeb of ScienceGoogle Scholar

  • Hillier, F. S., & Lieberman, G. J. (2014). Introduction to Operations Research, 10th edn. McGraw-Hill Higher Education, New York, NY. Google Scholar

  • Kalhor, E., Khanzadi, M., Eshtehardian, E., & Afshar, A. (2011). Stochastic time-cost optimization using non-dominated archiving ant colony approach. Automation in Construction, 20(8), pp. 1193-1203. doi:CrossrefWeb of ScienceGoogle Scholar

  • Kažović, D., & Valenčić, D. (2013, May). Using Microsoft Project for project management in non-governmental organisations. In: Information & Communication Technology Electronics & Microelectronics (MIPRO), 2013 36th International Convention on 20-24 May 2013, Opatija, Croatia. IEEE, pp. 681-684. Google Scholar

  • Klanšek, U. (2016). Mixed-Integer nonlinear programming model for nonlinear discrete optimization of project schedules under restricted costs. Journal of Construction Engineering and Management, 142(3), 04015088. doi:CrossrefWeb of ScienceGoogle Scholar

  • Kostalova, J., & Tetrevova, L. (2014). Project management and its tools in practice in the Czech Republic. Procedia-Social and Behavioral Sciences, 150, pp. 678-689. doi:CrossrefGoogle Scholar

  • Marmel, E. (2013), Project 2010 Bible. John Wiley & Sons, Indianapolis, IN. Google Scholar

  • Mokhtari, H., Aghaie, A., Rahimi, J., & Mozdgir, A. (2010). Project time-cost trade-off scheduling: A hybrid optimization approach. International Journal of Advanced Manufacturing Technology, 50, 5-8(2010), pp. 811-822. doi:CrossrefWeb of ScienceGoogle Scholar

  • Nearchou, A. C. (2010). Scheduling with controllable processing times and compression costs using population-based heuristics. International Journal of Production Research, 48(23), pp. 7043-7062. doi:CrossrefWeb of ScienceGoogle Scholar

  • Petlíková, K., & Jarský, Č. (2017). Modeling of the time structure of construction processes using neural networks. Organization, Technology and Management in Construction: An International Journal, 9(1), pp. 1559-1564. doi:CrossrefGoogle Scholar

  • Sakellaropoulos, S., & Chassiakos, A. P. (2004). Project time-cost analysis under generalised precedence relations. Advances in Engineering Software, 35(10-11), pp. 715-724. doi:CrossrefGoogle Scholar

  • Silva Filho, O. S., Cezarino, W., & Ratto, J. (2010). Aggregate production planning: Modeling and solution via Excel spreadsheet and solver. IFAC Proceedings Volumes, 43(17), pp. 89-94. doi:CrossrefGoogle Scholar

  • Sonmez, R., & Bettemir, Ö. H. (2012). A hybrid genetic algorithm for the discrete time-cost trade-off problem. Expert Systems with Applications. 39(13), pp. 11428-11434. doi:CrossrefGoogle Scholar

  • Trautmann, N., & Gnägi, M. (2015, December). On an application of Microsoft Excel’s evolutionary solver to the resource-constrained project scheduling problem RCPSP. In: Industrial Engineering and Engineering Management (IEEM), 2015 IEEE International Conference on 6-9 Dec. 2015, Singapore. IEEE, pp. 646-650. doi:CrossrefGoogle Scholar

  • Valenko, T., & Klanšek, U. (2017, September). Cost optimal time scheduling integrating spreadsheet and project management software. In: 13th International Conference Organization, Technology and Management in Construction, 2017. Croatian Association for Construction Management: University of Zagreb, Faculty of Civil Engineering, pp. 42-53. Google Scholar

  • Vanhoucke, M. (2005). New computational results for the discrete time/cost trade-off problem with time-switch constraints. European Journal of Operational Research, 165(2), pp. 359-374. doi:CrossrefGoogle Scholar

  • Von Laszewski, G., & Dilmanian, L. E. (2008, November). e-Science project and experiment management with Microsoft Project. In: Grid Computing Environments Workshop, 2008. GCE’08. IEEE, pp. 1-8. doi:CrossrefGoogle Scholar

  • Yang, I.-T. (2007). Using elitist particle swarm optimization to facilitate bicriterion time-cost trade-off analysis. Journal of Construction Engineering and Management, 133(7), pp. 498-505. doi:CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2017-11-14

Accepted: 2017-11-24

Published Online: 2017-12-29

Published in Print: 2017-12-20


Citation Information: Organization, Technology and Management in Construction: an International Journal, Volume 9, Issue 1, Pages 1627–1637, ISSN (Online) 1847-6228, DOI: https://doi.org/10.1515/otmcj-2016-0028.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in