Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Organization, Technology and Management in Construction: an International Journal

Co-published with University of Zagreb, Faculty of Civil Engineering

1 Issue per year

Open Access
See all formats and pricing
More options …

A state-of-the-art review of built environment information modelling (BeIM)

J.H.M. Tah
  • School of the Built Environment, Faculty of Technology, Design and Environment, Oxford Brookes University, Headington Campus, Gipsy Lane, Oxford,OX3 0BP, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A.H. Oti
  • Corresponding author
  • School of the Built Environment, Faculty of Technology, Design and Environment, Oxford Brookes University, Headington Campus, Gipsy Lane, Oxford,OX3 0BP, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ F.H. Abanda
  • School of the Built Environment, Faculty of Technology, Design and Environment, Oxford Brookes University, Headington Campus, Gipsy Lane, Oxford,OX3 0BP, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-29 | DOI: https://doi.org/10.1515/otmcj-2016-0030


Elements that constitute the built environment are vast and so are the independent systems developed to model its various aspects. Many of these systems have been developed under various assumptions and approaches to execute functions that are distinct, complementary or sometimes similar. Furthermore, these systems are ever increasing in number and often assume similar nomenclatures and acronyms, thereby exacerbating the challenges of understanding their peculiar functions, definitions and differences. The current societal demand to improve sustainability per­formance through collaboration as well as whole-system and through-life thinking is driving the need to integrate independent systems associated with different aspects and scales of the built environment to deliver smart solutions and services that improve the well-being of citizens. The contemporary object-oriented digitization of real-world elements appears to provide a leeway for amalgamating the modelling systems of various domains in the built environment which we termed as built environment information modelling (BeIM). These domains include architecture, engineering, construction as well as urban planning and design. Applications such as building information modelling, geographic information systems and 3D city modelling systems are now being integrated for city modelling purposes. The various works directed at integrating these systems are examined, revealing that current research efforts on integration fall into three categories: (1) data/file conversion systems, (2) semantic mapping systems and (3) the hybrid of both. The review outcome suggests that good knowledge of these domains and how their respective systems operate is vital to pursuing holistic systems integration in the built environment.

Keywords : built environment; BIM; GIS; city modelling; integration


  • Abanda, F. H., Vidalakis, C., Oti, A. H., & Tah, J. H. M. (2015). A critical analysis of Building Information Modelling systems used in construction projects. Advances in Engineering Software, 90, pp. 183-201. Google Scholar

  • AIA. (2013). Guide, Instructions and Commentary to the 2013 AIA Digital Practice Documents, The American Institute of Architects. PAS 1192-2:2013.Google Scholar

  • Akinci, B., Karimi, H., Pradhan, A., Wu, C.-C., & Fichtl, G. (2010). CAD and GIS interoperability through semantic web services. CAD and GIS Integration 199. Google Scholar

  • Apollonio, F., Gaiani, M., & Sun, Z. (2013). 3D modeling and data enrichment in digital reconstruction of architectural heritage. ISPRS Archives 5: W2. Google Scholar

  • Apollonio, F. I., Gaiani, M., & Sun, Z. (2012). BIM-based modeling and data enrichment of classical architectural buildings. SCIRES-IT-SCIentific RESearch and Information Technology, 2(2), pp. 41-62. Google Scholar

  • Bahar, Y. N., Pere, C., Landrieu, J., & Nicolle, C. (2013). A thermal simulation tool for building and its interoperability through the Building Information Modeling (BIM) platform. Buildings, 3(2), 380-398. Google Scholar

  • Bansal, V. (2010). Use of GIS and topology in the identification and resolution of space conflicts. Journal of Computing in Civil Engineering, 25(2), 159-171. CrossrefGoogle Scholar

  • Barton, J., & Plume, J. (2006). A geospatial approach to managing public housing on super lots. In: Abdul-Rahman, A., Zlatanova, S., & Coors, V. (eds.), Innovations in 3D Geo Information Systems. Springer, pp. 615-628. Google Scholar

  • Batty, M. (2000). The new urban geography of the third dimension. Environment and Planning B: Planning and Design, 27(4), pp. 483-484. CrossrefGoogle Scholar

  • Benner, J., Geiger, A., Gröger, G., Häfele, K., & Löwner, M. (2013). Enhanced LOD concepts for virtual 3D city models. ISPRS annals of the photogrammetry, remote sensing and spatial information sciences. In: Proceedings of the ISPRS 8th 3D GeoInfo Conference & WG II/2 Workshop, 27-29 November 2013, Istanbul, Turkey. Google Scholar

  • Benner, J., Geiger, A., & Leinemann, K. (2005). Flexible generation of semantic 3D building models. In: Proceedings of the 1st International Workshop on Next Generation 3D City Models, Bonn. Google Scholar

  • Biljecki, F., Stoter, J., Ledoux, H., Zlatanova, S., & Çöltekin, A. (2015). Applications of 3D city models: state of the art review. ISPRS International Journal of Geo-Information, 4(4), pp. 2842-2889. Google Scholar

  • Billen, R., Cutting-Decelle, A.-F., Marina, O., de Almeida, J.-P., Caglioni, M., Falquet, G., et al. (2014). 3D City Models and urban information: Current issues and perspectives -European COST Action TU0801, EDP sciences. Google Scholar

  • BIM Forum. (2015). Level of Development Specification, BIMForum. Accessed 29 July, 2016 from: https://bimforum.org/2015/07/23/draft-2015-lod-spec-available-for-comment/. Google Scholar

  • Bishr, Y. (1998). Overcoming the semantic and other barriers to GIS interoperability. International Journal of Geographical Information Science, 12(4), pp. 299-314. CrossrefGoogle Scholar

  • Borrmann, A. (2010). From GIS to BIM and back again-A Spatial Query Language for 3D building models and 3D city models. In: 5th International 3D Geoinfo Conference, BerlinV. Google Scholar

  • Borrmann, A., Kolbe, T. H., Donaubauer, A., Steuer, H., Jubierre, J. R., & Flurl, M. (2015). Multi-scale geometric semantic modeling of shield tunnels for GIS and BIM applications. Computer-Aided Civil and Infrastructure Engineering, 30(4), pp. 263-281. Google Scholar

  • Breunig, M., & Zlatanova, S. (2011). 3D geo-database research: Retrospective and future directions. Computers & Geosciences, 37(7), pp. 791-803. Google Scholar

  • BSI. (2013). PAS 1192-2:2013 - Specification for information management for the capita/delivery phase of construction projects using building information modelling, British Standards Institute. PAS 1192-2:2013. Google Scholar

  • buildingSMART. (2016). Home/Future. Available at http://www.buildingsmart-tech.org/future on 28 March, 2016. Google Scholar

  • Chandrasekaran, B., Josephson, J. R., & Benjamins, V. R. (1999). What are ontologies, and why do we need them? IEEE Intelligent Systems, 14(1), pp. 20-26. CrossrefGoogle Scholar

  • Charalabidis, Y., Panetto, H., Loukis, E., & Mertins, K. (2008). Interoperability approaches for enterprises and adminis­trations worldwide. The Electronic Journal for E-commerce Tools and Applications (eJETA), 2(3), pp. 1-10. Google Scholar

  • Charalabidis, Y., Pantelopoulos, S., & Koussos, Y. (2004). Enabling interoperability of transactional enterprise applications. In: Workshop on Interoperability of Enterprise Systems, 18th European Conference on Object-Oriented Programming (ECOOP), Oslo. Google Scholar

  • Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J., et al. (1994). The TSIMMIS project: Integration of heterogenous information sources. In: Information Processing Society of Japan (IPSJ 1994), October 1994, Tokyo, Japan. Google Scholar

  • Chen, R. (2011). The development of 3D city model and its applications in urban planning. In: Geoinformatics, 2011 19th International Conference on, IEEE, Shanghai, China. Google Scholar

  • Cheng, J., Deng, Y., & Du, Q. (2013). Mapping between BIM models and 3D GIS city models of different levels of detail. In: 13th international Conference on Construction Applications of Virtual Reality, London. Google Scholar

  • Cheng, J. C., Lu, Q., & Deng, Y. (2016). Analytical review and evaluation of civil information modeling. Automation in Construction, 67, pp. 31-47. Google Scholar

  • Clemen, C., & Gründig, L. (2006). The Industry Foundation Classes (IFC)-ready for indoor cadastre? In: Proceedings of XXIII International FIG Congress, Munich. Google Scholar

  • Cote, P. (2007). OGC web services architecture for CAD GIS and BIM. Interoperability Program Report, Version 1: 07-023. Google Scholar

  • de Laat, R., & van Berlo, L. (2011). Integration of BIM and GIS: The development of the CityGML GeoBIM extension. In: Kolbe, T., König, G., & Nagel, C. (eds.), Advances in 3D Geo-Information Sciences. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. doi:CrossrefGoogle Scholar

  • Deng, Y., Cheng, J. C., & Anumba, C. (2016). Mapping between BIM and 3D GIS in different levels of detail using schema mediation and instance comparison. Automation in Construction, 67, pp. 1-21. Google Scholar

  • Döllner, J., Baumann, K., & Buchholz, H. (2006). Virtual 3D city models as foundation of complex urban information spaces. CORP & Geomultimedia06, Vienna. Google Scholar

  • Döllner, J., & Hagedorn, B. (2007). Integrating urban GIS, CAD, and BIM data by service based virtual 3D city models. In: Rumor, M., Coors, V., Fendel, E. M., & Zlatanova, S. (eds.), Urban and Regional Data Management-Annual. Taylor & Francis Group, London, pp. 157-160. Google Scholar

  • Dore, C., & Murphy, M. (2012). Integration of historic building information modeling and 3D GIS for recording and managing cultural heritage sites. In: 18th International Conference on Virtual Systems and Multimedia: “Virtual Systems in the Information Society”, 2-5 September, 2012, Milan, Italy, pp. 369-376. doi:CrossrefGoogle Scholar

  • Du, Y., & Zlatanova, S. (2006). An approach for 3D visualization of pipelines. In: Abdul-Rahman, A., Zlatanova, S., & Coors, V. (eds.), Innovations in 3D Geo Information Systems. Lecture Notes in Google Scholar

  • Geoinformation and Cartography. Springer, Berlin, Heidelberg, pp. 501-517. doi:CrossrefGoogle Scholar

  • Egan, S. J. (1998). Rethinking Construction. Construction Task Force Scope for Improving the Quality and Efficiency of the Construction Industry. Department of Environment, Transport and the Regions (DETR), London, UK. Google Scholar

  • El-Mekawy, M., Östman, A., & Hijazi, I. (2012). A unified building model for 3D urban GIS. ISPRS International Journal of Geo-Information, 1(2), pp. 120-145. Google Scholar

  • Elbeltagi, E., & Dawood, M. (2011). Integrated visualized time control system for repetitive construction projects. Automation in Construction, 20(7), pp. 940-953. CrossrefGoogle Scholar

  • Fai, S., Graham, K., Duckworth, T., Wood, N., & Attar, R. (2011). Building information modelling and heritage documentation. In: Proceedings of the 23rd International Symposium, International Scientific Committee for Documentation of Cultural Heritage (CIPA), Prague, Czech Republic. Google Scholar

  • Fosu, R., Suprabhas, K., Rathore, Z., & Cory, C. (2015). Integration of Building Information Modeling (BIM) and Geographic Information Systems (GIS)-a literature review and future needs. In: Beetz, J. et al (eds.), Proceedings of the 32nd CIB W78 Conference, 27th-29th October, Eindhiven, The Netherlands. Google Scholar

  • Gröger, G., & Plümer, L. (2012). CityGML-Interoperable semantic 3D city models. ISPRS Journal of Photogrammetry and Remote Sensing, 71, pp. 12-33. Google Scholar

  • Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2), pp. 199-220. CrossrefGoogle Scholar

  • Hichri, N., Stefani, C., De Luca, L., Veron, P., & Hamon, G. (2013.). From point cloud to BIM: a survey of existing approaches. In: Proceedings of the XXIV International CIPA Symposium, 2013, Strasbourg, France.〈hal-01178692〉Google Scholar

  • Hijazi, I., Ehlers, M., Zlatanova, S., Becker, T., & van Berlo, L. (2011). Initial investigations for modeling interior Utilities within 3D Geo Context: Transforming IFC-interior utility to CityGML/ UtilityNetworkADE. In: Kolbe, T., König, G., & Nagel, C. (eds.), Advances in 3D Geo-Information Sciences. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg, pp. 95-113. doi:CrossrefGoogle Scholar

  • Hijazi, I., Ehlers, M., Zlatanova, S., & Isikdag, U. (2009). IFC to CityGML transformation framework for geo-analysis: a water utility network case. In: 4th International Workshop on 3D Geo-Information, 4-5 November 2009, Ghent, Belgium. Google Scholar

  • Hijazi, I. H., Ehlers, M., & Zlatanova, S. (2012). NIBU: A new approach to representing and analysing interior utility networks within 3D geo-information systems. International Journal of Digital Earth, 5(1), pp. 22-42. CrossrefGoogle Scholar

  • Irizarry, J., & Karan, E. P. (2012). Optimizing location of tower cranes on construction sites through GIS and BIM integration. Journal of Information Technology in Construction, 17, pp. 351-366. Google Scholar

  • Irizarry, J., Karan, E. P., & Jalaei, F. (2013). Integrating BIM and GIS to improve the visual monitoring of construction supply chain management. Automation in Construction, 31, pp. 241-254. CrossrefGoogle Scholar

  • Isikdag, U., Underwood, J., & Aouad, G. (2008). An investigation into the applicability of building information models in geospatial environment in support of site selection and fire response management processes. Advanced Engineering Informatics, 22(4), pp. 504-519. CrossrefGoogle Scholar

  • Isikdag, U., & Zlatanova, S. (2009). Towards defining a framework for automatic generation of buildings in CityGML using building Information Models. In: Lee, J., & Zlatanova, S. (eds.), 3D Geo- Information Sciences. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg, pp. 79-96. doi:CrossrefGoogle Scholar

  • Karan, E. P., & Irizarry, J. (2015). Extending BIM interoperability to preconstruction operations using geospatial analyses and semantic web services. Automation in Construction, 53, pp. 1-12. Google Scholar

  • Karan, E. P., Irizarry, J., & Haymaker, J. (2015). BIM and GIS integration and interoperability based on semantic web technology. Journal of Computing in Civil Engineering, 30(3), 04015043. Google Scholar

  • Kim, S. A., Shin, D., Choe, Y., Seibert, T., & Walz, S. P. (2012). Integrated energy monitoring and visualization system for Smart Green City development: Designing a spatial information integrated energy monitoring model in the context of massive data management on a web based platform. Automation in Construction, 22, pp. 51-59. CrossrefGoogle Scholar

  • Kolbe, T. H. (2009). Representing and exchanging 3D city models with CityGML. In: Lee, J., & Zlatanova, S. (eds.), 3D Geo- Information Sciences. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. pp. 15-31. https://doi.org/10.1007/978-3-540-87395-2_2. CrossrefGoogle Scholar

  • Kuhn, W. (2005). Geospatial semantics: why, of what, and how? In: Spaccapietra, S., & Zimányi, E. (eds.), Journal on Data Semantics III. Lecture Notes in Computer Science, Vol. 3534. Springer, Berlin, Heidelberg. pp. 1-24. https://doi.org/10.1007/11496168_1. CrossrefGoogle Scholar

  • Kvan, T. (2000). Collaborative design: What is it? Automation in Construction, 9(4), pp. 409-415. CrossrefGoogle Scholar

  • Kyle, B. R. (2001). Toward effective decision making for building management. In: Proceedings of APWA International Public Works Congress Sep. 2001 NRCC/CPWA/IPWEA Seminar Series in Innovations in Urban Infrastructure, Philadelphia. Available at https://pdfs.semanticscholar.org/6f4c/1110177159d4c­d6aee0baaba2aea6c1eac69.pdf. Google Scholar

  • Leite, F., Akcamete, A., Akinci, B., Atasoy, G., & Kiziltas, S. (2011). Analysis of modeling effort and impact of different levels of detail in building information models. Automation in Construction, 20(5), pp. 601-609. CrossrefGoogle Scholar

  • Lemer, A. (1998). Progress toward integrated infrastructure-assets-management systems: GIS and beyond. In: Innovations in Urban Infrastructure Seminar of the APWA International Public Works Congress, September, 1998. NRCC/CPWA/ IPWEA Seminar Series “Innovations in Urban Infrastructure”, Philadelphia. Available at https://pdfs.semanticscholar.org/88b9/6b91e06687a9f67a8fdb86400fc1c3389c3f.pdf. Google Scholar

  • Maarof, M. H. B. S., & Yahya, Y. (2009). Digital libraries interop­erability issues. In: Electrical Engineering and Informatics, 2009. ICEEI’09. International Conference on, IEEE, Selangor, Malaysia. Google Scholar

  • Marzouk, M., & Hisham, M. (2012). Applications of building information modeling in cost estimation of infrastructure bridges. International Journal of 3-D Information Modelling (IJ3DIM) 1(2), pp. 17-29. Google Scholar

  • Mattessich, P. W., & Monsey, B. R. (1992). Collaboration: What Makes it Work. A Review of Research Literature on Factors Influencing Successful Collaboration. ERIC, Amherst H. Wilder Foundation, St. Paul, MN. ISBN-0-940-06902-4.Google Scholar

  • Murphy, M., McGovern, E., & Pavia, S. (2013). Historic Building Information Modelling-Adding intelligence to laser and image based surveys of European classical architecture. ISPRS Journal of Photogrammetry and Remote Sensing, 76, pp. 89-102. CrossrefGoogle Scholar

  • Nagel, C., & Kolbe, T. H. (2007). Conversion of IFC to CityGML. In: Meeting of the OGC 3DIM Working Group at OGC TC/PC Meeting, Paris (Frankreich). Google Scholar

  • OMG. (2015). Unified Modeling Language Specification UML v2.5. Available at http://www.omg.org/spec/UML/2.5/PDF/ on March, 2016. Google Scholar

  • Park, J., & Ram, S. (2004). Information systems interoperability: What lies beneath? ACM Transactions on Information Systems (TOIS), 22(4), pp. 595-632. CrossrefGoogle Scholar

  • Peachavanish, R., Karimi, H. A., Akinci, B., & Boukamp, F. (2006). An ontological engineering approach for integrating CAD and GIS in support of infrastructure management. Advanced Engineering Informatics, 20(1), pp. 71-88. CrossrefGoogle Scholar

  • Rafiee, A., Dias, E., Fruijtier, S., & Scholten, H. (2014). From BIM to geo-analysis: view coverage and shadow analysis by BIM/GIS integration. Procedia Environmental Sciences, 22, pp. 397-402. Google Scholar

  • Ram, S., & Ramesh, V. (1999). Schema integration: Past, present, and future. Management of Heterogeneous and Autonomous Database Systems, Morgan Kaufmann Publishers Inc, pp. 119-155. Google Scholar

  • Rezaei, R., Chiew, T. K., Lee, S. P., & Aliee, Z. S. (2014a). A semantic interoperability framework for software as a service systems in cloud computing environments. Expert Systems with Applications, 41(13), pp. 5751-5770. CrossrefGoogle Scholar

  • Roof, K. (2008). Public health: Seattle and King County’s push for the built environment. Journal of Environmental Health, 71(1), 24. Google Scholar

  • Saygi, G., Agugiaro, G., Hamamcioglu-Turan, M., & Remondino, F. (2013). Evaluation of GIS and BIM roles for the information management of historical buildings. ISPRS Ann. Photogrammetry Remote Sensing Spatial Information Sciences, 2, pp. 283-288. Google Scholar

  • Sen, S., Fernandes, D., Arunachalam, G., Gupta, S. R., & Sarda, N. (2007). Framework of semantic interoperability using geospatial ontologies. Journal of Geomatics, pp. 71-76. Google Scholar

  • Shiode, N. (2000). 3D urban models: Recent developments in the digital modelling of urban environments in three-dimensions. GeoJournal, 52(3), pp. 263-269. Google Scholar

  • Shirole, A. M., Riordan, T. J., Chen, S. S., Gao, Q., Hu, H., & Puckett, J. A. (2009). BrIM for project delivery and the life-cycle: state of the art. Bridge Structures 5(4), pp. 173-187. Google Scholar

  • Stadler, A., & Kolbe, T. H. (2007). Spatio-semantic coherence in the integration of 3D city models. In: Proceedings of the 5th International Symposium on Spatial Data Quality, Enschede. Google Scholar

  • Stoter, J., Vosselman, G., Goos, J., Zlatanova, S., Verbree, E., Klooster, R., et al. (2011). Towards a national 3D spatial data infrastructure: Case of the Netherlands. Photogrammetrie- Fernerkundung-Geoinformation, 2011(6), pp. 405-420. CrossrefGoogle Scholar

  • Thomas, G. (2011). A typology for the case study in social science following a review of definition, discourse, and structure. Qualitative inquiry 17(6), pp. 511-521. CrossrefGoogle Scholar

  • Thompson, E., Horne, M., Lockley, S., & Cerny, M. (2011). Towards an information rich 3D city model: Virtual NewcastleGateshead GIS integration. In: Proceedings of 12th International Conference on Computers in Urban Planning and Urban Management, Alberta, Canada. Google Scholar

  • Toroghi Bidabadi, Z., Hosseinalipour, M., Hamidizadeh, M. R., & Mohebifar, A. (2016). Supply chain collaboration within the Iranian construction industry. Organization, Technology & Management in Construction: An International Journal, 8(1), pp. 1437-1445. Google Scholar

  • van Berlo, L., & de Laat, R. (2011). Integration of BIM and GIS: The development of the CityGML GeoBIM extension. In: Kolbe, T. H., König, G., & Nagel, C. (eds.), Advances in 3D Geo-Information Sciences. Springer, Berlin, Heidelberg. pp. 211Ã-227. Google Scholar

  • Veer, H., & Wiles, A. (2008). Achieving Technical Interoperability-the European Telecommunications Standards Institute (ETSI) Approach, ETSI White Paper No. 3, ETSI Publishers. Available at http://www.etsi.org/WebSite/document/whitepapers/WP3_IOP_final.pdf. Google Scholar

  • Vanier, D. D. (2001). Why industry needs asset management tools. Journal of Computing in Civil Engineering, 15(1), pp. 35-43. CrossrefGoogle Scholar

  • Visser, U., Stuckenschmidt, H., & Schlieder, C. (2002a). Interoper­ability in GIS-enabling technologies. In: Ruiz, M., Gould, M., & Ramon, J. (eds.), Proceedings of the 5th AGILE Conference on Geographic Information Science, 25-27 April, 2002, Palma, Spain. Google Scholar

  • Visser, U., Stuckenschmidt, H., Schuster, G., & Vögele, T. (2002b). Ontologies for geographic information processing. Computers & Geosciences, 28(1), pp. 103-117. CrossrefGoogle Scholar

  • Visser, U., Stuckenschmidt, H., Wache, H., & Vögele, T. (2000). Enabling technologies for interoperability. In: Visser, U., & Pundt, H. (eds.), Workshop on the 14th International Symposium of Computer Science for Environmental Protection, Bonn, Germany. Google Scholar

  • W3C. (2015). Semantic Web. Available at https://www.w3.org/standards/semanticweb/ on March, 2016. Google Scholar

  • Wiederhold, G. (1992). Mediators in the architecture of future information systems. Computer, 25(3), pp. 38-49. CrossrefGoogle Scholar

  • Zhang, X., Arayici, Y., Wu, S., Abbott, C., & Aouad, G. (2009). Integrating BIM and GIS for large-scale facilities asset management: A critical review. In: The Twelfth International Conference on Civil, Structural and Environmental Engineering Computing, 1-4 September 2009, Funchal, Madeira, Portugal.Google Scholar

About the article

Received: 2017-11-30

Accepted: 2017-12-01

Published Online: 2017-12-29

Published in Print: 2017-12-20

Citation Information: Organization, Technology and Management in Construction: an International Journal, Volume 9, Issue 1, Pages 1638–1654, ISSN (Online) 1847-6228, DOI: https://doi.org/10.1515/otmcj-2016-0030.

Export Citation

© 2018. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in