Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Open Veterinary Science

Editor-in-Chief: KORNEGAY, Joe

Open Access
Online
ISSN
2544-8951
See all formats and pricing
More options …

Prion Evolvability and the Hazard of Atypical Scrapie in Small Ruminants

David B. Adams
Published Online: 2019-09-13 | DOI: https://doi.org/10.1515/ovs-2020-0001

Abstract

Observations on strain behaviour and direct demonstrations of natural selection establish that the scrapie agent and prions in general are able to evolve. Accordingly, it is conceivable that atypical non-contagious scrapie in sheep and goats can transform to classical contagious scrapie under particular circumstances. In consequence, atypical scrapie can be regarded as a latent hazard that warrants comprehensive risk assessment and biosecurity preparedness planning. Evidence for this proposition comes from differences in the expression of atypical and classical scrapie that may make scrapie contagious, historical records of scrapie in Western Europe, and contemporary accounts of the epidemiology of atypical scrapie. Biosecurity preparedness can be based on current knowledge of pathophysiology and epidemiology and can be built around a three-stage model for the endogenous emergence of a propagating epidemic of scrapie. The first stage concerns the occurrence of atypical scrapie. The second stage concerns the acquisition of communicability in prion populations provided by atypical scrapie and the third stage concerns circumstances allowing disease transmission and the initiation of a propagating epidemic. The range of component causes envisaged for possible outbreaks of endogenous classical scrapie is broad. However, exposure of sheep and goats to cyanobacterial toxins qualifies for special attention.

Keywords: Proteostasis; Biosecurity; Neurotoxin; Neuro-degenerative

Abbreviations

PrP,

cellular prion protein

PrPSc,,

mis-folded disease form of the cellular prion protein

References

  • [1] Nesse RM, Stearns SC. The great opportunity: evolutionary applications to medicine and public health. Evol Appl. 2008;1:24-28.Google Scholar

  • [2] Nesse RM, Bergstrom CT, Ellison P, Flier JS, Gluckman P, Govindaraju DR, et al. Evolution in health and medicine. Sackler colloquium: Making evolutionary biology a basic science for medicine. Proc Natl Acad Sci USA. 2010;107:Suppl 1,1800-1807.Google Scholar

  • [3] Adams DB. Evolutionary biology and the risk of scrapie disease in sheep. Open Vet J. 2018;8:282-294.Google Scholar

  • [4] Prusiner SB. Prions. Proc Natl Acad Sci. USA, 1998;23:13363-13383.CrossrefGoogle Scholar

  • [5] Maynard Smith J. The theory of evolution. Cambridge University Press. Cambridge;1993.Google Scholar

  • [6] Kirschner M, Gerhart J. Evolvability. Proc Natll Acad Sci USA. 1998;95:8420-8427.Google Scholar

  • [7] Brookfield JFY. Evolution and evolvability: celebrating Darwin 200. Biol. Lett. 2009;5:44-46.Google Scholar

  • [8] Lewontin RC. The units of selection. Annu Rev Ecol Evol. 1970;1:1-18.Google Scholar

  • [9] Mayr E. What evolution is. Orion Books. London;2001.Google Scholar

  • [10] Laland KN, Uller T, Feldman MW, Sterelny K, Müller GB, Moczek A, et al. The extended evolutionary synthesis: its structure, assumptions and predictions. Proc R Soc B. 2015;282:20151019.Google Scholar

  • [11] Prusiner SB. Biology and genetics of prions causing neurode-generation. Ann Rev Genet. 2013;47:601–623.CrossrefGoogle Scholar

  • [12] EFSA Panel on Biological Hazards. Scientific opinion on the scrapie situation in the EU after 10 years of monitoring and control in sheep and goats. EFSA Journal. 2014;12:3781.Google Scholar

  • [13] Greenlee JJ. Review: update on classical and atypical scrapie in sheep and goats. Vet Pathol. 2019;56:6-16.Google Scholar

  • [14] OIE. OIE Terrestrial Animal Health Code. World Organisation for Animal Health. Paris;2017.Google Scholar

  • [15] Benestad SL, Sarradin P, Thu B, Schonheit J, Tranulis MA, Bratberg B. Cases of scrapie with unusual features in Norway and desigNatlion of a new type, Nor98. Vet. Rec. 2003;153;202-208.Google Scholar

  • [16] Ulvund MJ. Ovine scrapie disease: do we have to live with it? Small Rumin Res. 2008;76:131-140.CrossrefGoogle Scholar

  • [17] Lühken G, Buschmann A, Brandt H, Eiden M, Groschup MH, Erhardt G. Epidemiological and genetical differences between classical and atypical scrapie cases. Vet Res. 2007;38:65-80.Google Scholar

  • [18] Fediaevsky A, Tongue SC, Noremark M, Calavas D, Ru G, Hopp P. 2008. A descriptive study of the prevalence of atypical and classical scrapie in sheep in 20 European countries. BMC Vet. Res. 2008;4:19.Google Scholar

  • [19] Parry, H.B. 1966. Natural (spontaneous) scrapie in sheep. I. Clinical manifestation and general incidence, treatment, and related syndromes. In Report of Scrapie Seminar Held At Washington, D.C., January 27-30, 1964. Agricultural Research Service, US Department of Agriculture. pp. 95-103;1966. https://archive.org/stream/report9153scra/report9153scra_djvu.txt.

  • [20] Parry HB. Scrapie disease in sheep: historical, epidemio-logical, pathological and practical aspects of the Natural disease. Ed. Oppenheimer DR. London: Academic Press. London;1983.Google Scholar

  • [21] Ulvund MJ. Clinical findings in scrapie. In Prions in humans and animals, eds. Hörnlimann B, Riesner D, and Kretzschmar H. de Gruyter. Berlin. pp. 398-407;2006.Google Scholar

  • [22] Benestad SL, Arsac JN, Goldmann W, Noremark M. Atypical/Nor98 scrapie: properties of the agent, genetics, and epidemiology. Vet Res. 2008;39;19.Google Scholar

  • [23] Andreoletti O, Orge L, Benestad SL, Beringue V, Litaise C, Simon S, et al. Atypical/Nor98 scrapie infectivity in sheep peripheral tissues. PLoS Pathog. 2011;7:e1001285.Google Scholar

  • [24] Jeffrey M, Begara-McGorum I, Clark S, Martin S, Clark J, Chaplin M, Gonzalez L. Occurrence and distribution of infection specific PrP in tissues of clinical scrapie cases and culled sheep from scrapie-affected farms in Shetland. J Comp Path 2002;127:264-273.Google Scholar

  • [25] Jeffrey M, Gonzalez L. Classical sheep transmissible spongiform encephalopathies: pathogenesis, pathological phenotypes and clinical disease. Neuropath Appl Neurobiol.2007;33:373-394.Google Scholar

  • [26] van Keulen LJM, Bossers A, van Zijderveld F. TSE pathogenesis in cattle and sheep. Vet Res. 2008;39:24.Google Scholar

  • [27] Simmons MM, Konold T, Simmons HA, Spencer YI, Lockey R, Spiropolous J, et al. Experimental transmission of atypical scrapie to sheep. BMC Vet Res. 2007;3:20.Google Scholar

  • [28] Jeffrey M, McGovern G, Siso S, Gonzalez L. Cellular and sub-cellular pathology of animal prion diseases: relationship between morphological changes, accumulation of abnormal prion protein and clinical disease. Acta Neuropath. 2011;121:113-134.Google Scholar

  • [29] Parham P. The immune system. 4th ed. Garland Science. New York; 2014.Google Scholar

  • [30] Adams DB. Prenatal transmission of scrapie in sheep and goats: A case study for veterinary public health. Open Vet. J. 2016;6:194-214.Google Scholar

  • [31] Sandberg MK, Al-Doujaily H, Sharps B, Clarke AR, Collinge J. 2011. Prion propagation and toxicity in vivo occur in two distinct mechanistic phases. Nature. 2011;470:540-542.Google Scholar

  • [32] Colby DW, Prusiner SB. Prions. Cold Spring Harb. Perspect. Biol. 2011;3:a006833.Google Scholar

  • [33] Wenborn A, Terry C, Gros N, Joiner S, D’Castro L, Panico S, et al. A novel and rapid method for obtaining high titre intact prion strains from mammalian brain. Sci Rep. 2015;5:10062.Google Scholar

  • [34] Morales R, Hu PP, Duran-Aniotz C, Moda, F, Diaz-Espinoza R, Chen B, et al. Strain-dependent profile of misfolded prion protein aggregates. Sci. Rep. 2016;6:20526.CrossrefGoogle Scholar

  • [35] Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science. 2016:353:aac4354.Google Scholar

  • [36] Jackson MP, Hewitt EW. Cellular proteostasis: degradation of misfolded proteins by lysosomes. Essays Biochem. 2016;60:173-180.CrossrefPubMedGoogle Scholar

  • [37] Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40:280-293.Google Scholar

  • [38] Huxtable CR, Dorling PR. Animal model of human disease, mannosidosis, swainsonine-induced mannosidosis. Am J Path. 1982;107:124-126.Google Scholar

  • [39] Radostits OM, Gay CC, Blood DC, Hinchcliff KW. Veterinary Medicine: A Textbook of the Diseases of Cattle, Sheep, Pigs, Goats and Horses. WB Saunders Company Ltd. London; 2000.Google Scholar

  • [40] Li J, Browning S, Mahal SP, Oelschlegel AM, Weissmann, C. Darwinian evolution of prions in cell culture. Science. 327;2010:869-872.Google Scholar

  • [41] Cox PA, Banack SA, Murch SJ, Rasmussen U, Tien G, Bidigare RR, et al. Diverse taxa of cyanobacteria produce N-methyl-amino-L-alanine, a neurotoxic amino acid. Proc Natl Acad Sci USA. 2005;102:5074-5078.CrossrefGoogle Scholar

  • [42] Cox PA, Davis DA, Mash DC, Metcalf JS, Banack SA. Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. Proc Roy Soc B. 2016;283;20152397.Google Scholar

  • [43] Cox PA, Kostrzewa RM, Guillemin GG. BMAA and neurodegenerative illness. Neurotox Res. 2018;33:178-183.CrossrefPubMedGoogle Scholar

  • [44] Caller T, Henegan P, Strommel E. Potential role of BMAA in neurodegeneration. Neurotox Res. 2018;33:222-226.Google Scholar

  • [45] Mello FD, Braidy N, Marcal H, Guillemin G, Nabavi SM, Neilan BA. Mechanisms and effects posed by neurotoxic products of cyanobacterial/microbial eukaryotes/dinoflagellates in algal blooms: a review. Neurotox Res. 2018;33:153-167.CrossrefGoogle Scholar

  • [46] M’Gowan JP. Investigation into the disease of sheep called “Scrapie”. William Blackwood and Sons, Edinburgh; 1914. (https://archive.org/details/b21272384).

  • [47] Schneider K, Fangerau H, Michaelsen B, Raab WH. The early history of the transmissible spongiform encephalopathies exemplified by scrapie. Brain Res Bull. 2008;77:343-355.Google Scholar

  • [48] Bhopal RS. Concepts of Epidemiology: An integrated introduction to the ideas, theories, principles and methods of epidemiology. Oxford University Press, Oxford; 2002.Google Scholar

  • [49] Hopp P, Omer MK, Heier, BT. A case-control study of scrapie Nor98 in Norwegian sheep flocks. J Gen Virol. 2006;87:3729-3736.Google Scholar

  • [50] Green D., Victor J, Birch CP, Johnson J, Kiss IZ, McCarthy ND, Kao, R.R. 2007. Demographic risk factors for classical and atypical scrapie in Great Britain. J Gen Virol. 2007;88:3486-3492.CrossrefPubMedGoogle Scholar

  • [51] Fediaevsky A, Maurella C, Noremark M, Ingravalle F, Thorgeirsdottir S, Orge L, et al. The prevalence of atypical scrapie in sheep from positive flocks is not higher than in the general population in 11 European countries. BMC Vet. Res.2010;6: 9.Google Scholar

  • [52] McIntyre KM, del Rio Vilas VJ, Gubbins,S. No temporal trends in the prevalence of atypical scrapie in British sheep, 2002-2006. BMC Vet Res. 2008;4:13.Google Scholar

  • [53] Del Rio Vilas VJ, Vink WD, Hubbard R. A case-control study of atypical scrapie in GB sheep flocks. Prev Vet Med. 96; 2010:241-251.Google Scholar

  • [54] Ortiz-Pelaez A, Arnold ME, Vidal-Diez A. Epidemiological investigations on the potential transmissibility of a rare disease: the case of atypical scrapie in Great Britain. Epidemiol Infect. 2016;144:2107-2116.Google Scholar

  • [55] Del Rio Vilas VJ, Ancelet S, Abellan JJ, Birch CP, Richardson S. A Bayesian hierarchical analysis to compare classical and atypical scrapie surveillance data; Wales 2002-2006. Prev Vet Med. 2011;98:29-38.Google Scholar

  • [56] Fediaevsky A, Morignat E, Ducrot C, Calavas D. A case-control study on the origin of atypical scrapie in sheep, France. Emerg Infect. Dis 2009;15:710-718.CrossrefPubMedGoogle Scholar

  • [57] Fediaevsky A, Gasqui P, Calavas D, Ducrot C. Discrepant epidemiological patterns between classical and atypical scrapie in sheep flocks under French TSE control measures. Vet. J. 2010;185:338-340.Google Scholar

  • [58] Collinge J. Mammalian prions and their wider relevance in neurodegenerative diseases. Nature. 2016;539:217-226.Google Scholar

  • [59] Hull DL. Individuality and selection. Annu Rev Ecol Evol. 1980;11:311-332.Google Scholar

  • [60] Ciechanover A, Kwon YT. Protein Quality Control by Molecular Chaperones in Neurodegeneration. Front Neurosci. 2017;11:185.Google Scholar

  • [61] Hartl FU. Protein misfolding diseases. Annu Rev Biochem. 2107;86:21-26.Google Scholar

  • [62] Sontag EM, Samant RS, Frydman J. Mechanisms and functions of spatial protein quality control. Annu Rev Biochem. 2017;8:97-122.Google Scholar

  • [63] Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Natlure. 2013;501:45–51.Google Scholar

  • [64] Walker LC, Jucker M. 2015. Neurodegenerative diseases: expanding the prion concept. Annu Rev Neurosci. 2015;38:87-103.Google Scholar

  • [65] Goldstein DS, Kopin IJ. Evolution of concepts of stress. Stress. 2007;10:109-120.Google Scholar

  • [66] McEwen BS, Wingfield JC. What’s in a name? Integrating homeostasis, allostasis and stress. Horm Behav. 2010;57:105.Google Scholar

  • [67] Goldstein DS. Stress, allostatic load, catecholamines, and other neurotransmitters in neurodegenerative diseases. Cell Mol Neurobiol. 2012;35:661-666.Google Scholar

  • [68] McEwen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN, et al. 2015. Mechanisms of stress in the brain. Natl Neurosci. 2015;18:1353-1363.Google Scholar

  • [69] Tsigios C, Kyrou I, Kassi E, Chrousos GP. Stress, endocrine physiology and pathophysiology. In Endotext [Internet]. MDText.com, Inc. South Dartmouth MA;2016. Feingold KR, Anawalt B, Boyce A, Chrousos G, Dungan K, Grossman A, Hershman JM, Kaltsas G, Koch C, Kopp P, Korbonits M, McLachlan R, Morley JE, New M, Perreault L, Purnell J, Rebar R, Singer F, Trence DL, Vinik A, Wilson DP, editors.Google Scholar

  • [70] National Academies of Sciences, Engineering, and Medicine. Approaches to understanding the cumulative effects of stressors on marine mammals. The Natlional Academies Press. Washington DC; 2017Google Scholar

  • [71] Castle AR, Gill A.C. Physiological Functions of the Cellular Prion Protein. Front Mol Biosci. 2017;4:19.Google Scholar

  • [72] Linden R. The biological function of the prion protein: a cell surface scaffold of signaling modules. Front Mol Neurosci. 2017;10:77.Google Scholar

  • [73] Wulf MA, Senatore A, Aguzzi A. The biological function of the cellular prion protein: an update. BMC Biol. 2017;15:34Google Scholar

  • [74] Ransohoff R. How neuroinflammation contributes to neurode-generation. Science 2016;353:777-783.Google Scholar

  • [75] Finnie JW, Windsor PA, Kessell AE. Neurological diseases of ruminant livestock in Australia. I: General neurological examiNatlion, necropsy procedures and neurological manifestations of systemic disease, trauma and neoplasia. Aust Vet J. 89;2011:243-246.Google Scholar

  • [76] Finnie JW, Windsor PA, Kessell AE. Neurological diseases of ruminant livestock in Australia. II: toxic disorders and nutritional deficienciesavj_793 Aust Vet J.2011; 89:247-252.Google Scholar

  • [77] Kessell AE, Finnie JW, Windsor P.A. Neurological diseases of ruminant livestock in Australia. III: bacterial and protozoal infections. Aust Vet J.2011;89:247-252.Google Scholar

  • [78] Wilkinson R. and Marmot M. Social determinants of health; the solid facts. 2nd ed. World Health Organisation. WHO Regional Office for Europe;2003.Google Scholar

  • [79] Mahal SP, Browning S, Li J, Suponitsky-Kroyter I, Weissmann, C. Transfer of a prion strain to different hosts leads to emergence of strain variants. Proc Natl Acad Sci USA. 2010;107: 22653-22658.Google Scholar

  • [80] Jolly RD, Walkley SU. Lysosomal storage diseases of animals: an essay in comparative pathology. Vet Path. 1997;34:527-548.Google Scholar

  • [81] Montez JK, Zajacova A. Trends in mortality risk by education level and cause of death among US white women from 1986 to 2006. Am J Pub Hlth. 2013;103:473-479.Google Scholar

  • [82] Hörnlimann B, Bachmann J, Bradley R. Portrait of bovine spongiform encephalopathy in cattle and other ungulates. In Prions in Humans and Animals. De Gruyter, Berlin; 2006.Google Scholar

  • [83] Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M, et al. 2004. Cells release prions in association with exosomes. Proc Natll Acad Sci. USA. 2004;101:9683-9688.Google Scholar

  • [84] Wraith DC, Nicholson LB. The adaptive immune system in diseases of the central nervous system. J Clin Invest. 2012;122:1172-1179.Google Scholar

  • [85] Ransohoff RM, Engelhardt B. 2012. The anatomical and cellular basis of immune surveillance in the central nervous system. Natl Rev Immunol. 2012;12:623-35.CrossrefGoogle Scholar

  • [86] Engelhardt B, Carare RO, Bechmann I, Flugel A, Laman JD, Weller RO. Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol. 2016;132:317-338.Google Scholar

  • [87] Aspelund A, Antila S, Proulx ST, Tine VK, Karaman S, Detmar M. et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212:991-999.Google Scholar

  • [88] Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani S, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Natlure. 2015; 523:337-41.Google Scholar

  • [89] Kipnis J. Multifaceted interactions between adaptive immunity and the central nervous system. Science. 2016;353:766-71.Google Scholar

  • [90] John B, Hunter CA, Harris TJ. Immune cell trafficking in the central nervous system. In, Neuroinflammation and neurode-generation, eds. Peterson PK, Toborek M. Springer. New York; 2014.Google Scholar

  • [91] Maestrale C, Di Guardo G, Cancedda MG, Marruchella G, Masia M, Sechi S. et al. A lympho-follicular microenvironment is required for pathological prion protein deposition in chronically inflamed tissues from scrapie-affected sheep. PLoS One. 2013;8:e62830.PubMedGoogle Scholar

  • [92] Lacroux C, Simon S, Benestad SL, Maillet S, Mathey J, Lugan S, et al. Prions in milk from ewes incubating Natlural scrapie. PLoS Pathog. 2008;4:e1000238.PubMedGoogle Scholar

  • [93] Salazar E, Monleon E, Bolea R, Acin C, Perez M, Alvarez N, et al. Detection of PrPSc in lung and mammary gland is favored by the presence of Visna/maedi virus lesions in naturally coinfected sheep. Vet Res. 2010;41:58.Google Scholar

  • [94] Ligios C, Cancedda MG, Carta A, Santucciu C, Maestrale C, Demontis F, et al. Sheep with scrapie and mastitis transmit infectious prions through the milk. J Virol. 2011;85:1136-1139.Google Scholar

  • [95] Foster JD, Goldmann W, Hunter N. Evidence in sheep for pre-natal transmission of scrapie to lambs from infected mothers. PLoS One. 2013;8:e79433.Google Scholar

  • [96] Garza MC, Fernandez-Borges N, Bolea R., Badiola JJ, Castilla J, Monleon E. Detection of PrPres in genetically susceptible fetuses from sheep with natural scrapie. PLoS One. 2011;6:e27525.Google Scholar

  • [97] Rubenstein R, Bulgin MS, Chang B, Sorensen-Melson S, Petersen RB, Lafauci G. PrPSc detection and infectivity in semen from scrapie-infected sheep. J. Gen Virol. 2012;93:1375-1383.CrossrefGoogle Scholar

  • [98] Spiropoulos J, Hawkins SAC, Simmons MM, Bellworthy SJ. Evidence of in utero transmission of classical scrapie in sheep. J Virol. 2014;88:4591-4594.CrossrefGoogle Scholar

  • [99] Terry LA, Howells L, Bishop K, Baker CA, Everest S, Thorne L, et al. Detection of prions in the faeces of sheep naturally infected with classical scrapie. Vet. Res. 2011;42:65.Google Scholar

  • [100] Everest SJ, Ramsay AM, Chaplin MJ, Everitt S, Stack MJ, Neale MH, et al. Detection and localisation of PrP in the liver of sheep infected with scrapie and bovine spongiform encephalopathy. PLoS One 2011;6;e19737.Google Scholar

  • [101] Rubenstein R, Chang B, Gray P, Piltch M, Bulgin MS, Sorensen-Melson S, et al. Prion disease detection, PMCA kinetics, and IgG in urine from sheep naturally/experimentally infected with scrapie and deer with preclinical/clinical chronic wasting disease. J Virol. 2011;85:9031-9038.Google Scholar

  • [102] Ligios C, Cancedda G., Margalith I, Santucciu C, Madau L, Maestrale C, et al. Intraepithelial and interstitial deposition of pathological prion protein in kidneys of scrapie-affected sheep. PLoS One. 2007;2:e859.Google Scholar

  • [103] Alverson J, O’Rourke KI, Baszler TV. PrPSc accumulation in fetal cotyledons of scrapie-resistant lambs is influenced by fetus location in the uterus. J Gen Virol. 2006:87;1035–1041.Google Scholar

  • [104] Andreoletti O, Lacroux C, Chabert A, Monnereau L, Tabouret G, Lantier F, et al. PrPSc accumulation in placentas of ewes exposed to natural scrapie: influence of foetal PrP genotype and effect on ewe-to-lamb transmission. J Gen Virol. 2002;83:2607-2616.PubMedCrossrefGoogle Scholar

  • [105] Lacroux C, Corbiere F, Tabouret G, Lugan S, Costes P, Mathey J, et al. Dynamics and genetics of PrPSc placental accumulation in sheep. J Gen Virol. 2007;88:1056-1061.Google Scholar

  • [106] Onodera T, Ikeda T, Muramatsu Y, Shinagawa, M. Isolation of scrapie agent from the placenta of sheep with natural scrapie in Japan. Microbiol Immunol. 1993;37:311-316.Google Scholar

  • [107] Pattison IH, Hoare MN, Jebbett JN, Watson WA. Spread of scrapie to sheep and goats by oral dosing with foetal membranes from scrapie-affected sheep. Vet Rec. 1972;90:465-468.Google Scholar

  • [108] Pattison IH, Hoare MN, Jebbett JN, Watson, W.A. Further observations on the production of scrapie in sheep by oral dosing with foetal membranes from scrapie-affected sheep. Br Vet J.1974;130: lxv-lxviii.Google Scholar

  • [109] Tuo W, Zhuang D, Knowles DP, Cheevers WP, Sy MS, O’Rourke KI. Prp-c and Prp-Sc at the fetal-maternal interface. J Biol Chem. 2001;276:18229-18234.Google Scholar

  • [110] Race R, Jenny A, Sutton D. Scrapie infectivity and proteinase K-resistant prion protein in sheep placenta, brain, spleen, and lymph node: implications for transmission and antemortem diagnosis. J Infect Dis. 1998;178:949-953.Google Scholar

  • [111] Tuo W, O’Rourke KI, Zhuang D, Cheevers WP, Spraker TR, Knowles DP. 2002. Pregnancy status and fetal prion genetics determine PrPSc accumulation in placentomes of scrapie-infected sheep. Proc Natl Acad Sci U S A 2002;99:6310-6315.Google Scholar

  • [112] Konold T, Moore SJ, Bellworthy SJ, Simmons HA. 2008. Evidence of scrapie transmission via milk. BMC Vet Res. 2008;4:14.Google Scholar

  • [113] Maddison BC, Baker, CA, Rees HC, Terry LA, Thorne L, Bellworthy SJ, et al. 2009. Prions are secreted in milk from clinically normal scrapie-exposed sheep. J Virol. 2009;83:8293-8296.Google Scholar

  • [114] Konold T, Moore SJ, Bellworthy SJ, Terry LA, Thorne L, Ramsay A, et al. Evidence of effective scrapie transmission via colostrum and milk in sheep. BMC Vet Res. 2013;9:99.Google Scholar

  • [115] Gough KC, Baker, CA, Rees HC, Terry LA, Spiropoulos J, Thorne L, Maddison BC. The oral secretion of infectious scrapie prions occurs in preclinical sheep with a range of PRNP genotypes. J Virol. 2012;86:566-571.Google Scholar

  • [116] Maddison BC, Rees HC, Baker CA, Taema M, Bellworthy SJ, Thorne L, et al. Prions are secreted into the oral cavity in sheep with preclinical scrapie. J Infect Dis. 2010;201:1672-1676.Google Scholar

  • [117] Vascellari M, Nonno R, Mutinelli F, Bigolaro M, Di Bari MA, Melchiotti E, et al. PrPSc in salivary glands of scrapie-affected sheep. J Virol. 2007;81:4872-4876.Google Scholar

  • [118] Detwiler LA, Baylis M. The epidemiology of scrapie. Rev. Sci. Tech. 2003;22:121-143.Google Scholar

  • [119] Hawkins SAC, Simmons, H. A.; Gough, K. C, Maddison, B. C. Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination. Vet. Rec.2015;176: 99.Google Scholar

  • [120] Saunders SE, Bartz JC, Bartelt-Hunt SL. Soil-mediated prion transmission: is local soil-type a key determinant of prion disease incidence?. Chemosphere 2012; 87: 661-667.Google Scholar

  • [121] Hurley PJ. A Concise introduction to logic 8th ed. Wadsworth/Thompson Learning, Belmont Calif; 2003.Google Scholar

  • [122] Bonita R, Beaglehole R, Kjellström T. Basic Epidemiology 2nd ed. World Health Organization, Geneva; 2016.Google Scholar

  • [123] LeGrand EK, Brown CC. Darwinian medicine: applications of evolutionary biology for veterinarians. Can Vet J. 2002;43:556-559.Google Scholar

  • [124] Gliessman SR. Agroecology: the ecology of sustainable food systems. CRC Press. Boca Raton, Florida; 2007.Google Scholar

About the article

Received: 2019-04-22

Accepted: 2019-08-20

Published Online: 2019-09-13

Published in Print: 2020-01-01


Citation Information: Open Veterinary Science, Volume 1, Issue 1, Pages 1–14, ISSN (Online) 2544-8951, DOI: https://doi.org/10.1515/ovs-2020-0001.

Export Citation

© 2019 David B. Adams, published by De Gruyter Open. This work is licensed under the Creative Commons Attribution 4.0 Public License. BY 4.0

Comments (0)

Please log in or register to comment.
Log in