Jump to ContentJump to Main Navigation
Show Summary Details

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

IMPACT FACTOR increased in 2015: 2.615
5-year IMPACT FACTOR: 3.127
Rank 60 out of 163 in category Chemistry, Multidisciplinary in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2014: 1.012
Source Normalized Impact per Paper (SNIP) 2014: 1.187
Impact per Publication (IPP) 2014: 2.785

See all formats and pricing


Select Volume and Issue


Predicting bioconcentration factors of highly hydrophobic chemicals. Effects of molecular size

S. D. Dimitrov1 / N. C. Dimitrova1 / J. D. Walker2 / G. D. Veith3 / O. G. Mekenyan1

1Laboratory of Mathematical Chemistry, Bourgas University As. Zlatarov, 8010 Bourgas, Bulgaria

2TSCA Interagency Testing Committee (ITC), U.S. Environmental Protection Agency (7401M), 1200 Pennsylvania Ave., NW, Washington, DC 20460, USA

3U.S. Environmental Protection Agency, Mid-Continent Ecology Division, 6201 Congdon Boulevard, Duluth, MN 55804, USA


International Symposium on Solubility Phenomena, International Symposium on Solubility Phenomena, ISSP, Solubility Phenomena, 10th, Varna, Bulgaria, 2002-07-22–2002-07-26

Citation Information: Pure and Applied Chemistry. Volume 74, Issue 10, Pages 1823–1830, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/pac200274101823, January 2009

Publication History

Published Online:

The bioconcentration factor (BCF) is a parameter that describes the ability of chemicals to concentrate in aquatic organisms. Traditionally, it is modeled by the log–log quantitative structure -activity relationship (QSAR) between the BCF and the octanol- water partition coefficient (Kow). A significant scatter in the parabolic log(BCF)/log(Kow) curve has been observed for narcotics with log(Kow) greater than 5.5. This study shows that the scatter in the log(BCF)/log(Kow) relationship for highly hydrophobic chemicals can be explained by the molecular size. The significance of the maximal cross-sectional diameter on bioconcentration was compared with the traditionally accepted effective diameter. A threshold value of about 1.5 nm for this parameter has been found to discriminate chemicals with log(BCF) > 3.3 from those with log(BCF) < 3.3. This critical value for the maximum diameter is comparable with the architecture of the cell membrane. This threshold is half thickness of leaflet constituting the lipid bilayer. The existence of a size threshold governing bioconcentration is an indication of a possible switch in the uptake mechanism from passive diffusion to facilitated diffusion or active transport. The value of the transition point can be used as an additional parameter to hydrophobicity for predicting BCF variation. The effect of molecular size on bioconcentration has been studied by accounting for conformational flexibility of molecules.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Shelby Koide, Jeff A.K. Silva, Vilma Dupra, and Margo Edwards
Deep Sea Research Part II: Topical Studies in Oceanography, 2015
Isabel A. O’Connor, Karin Veltman, Mark A.J. Huijbregts, Ad M.J. Ragas, Frans G.M. Russel, and A. Jan Hendriks
Environmental Toxicology and Pharmacology, 2014, Volume 38, Number 3, Page 938
Rajni Garg and Carr J. Smith
Food and Chemical Toxicology, 2014, Volume 69, Page 252
Francisca Acevedo, Mónica Rubilar, Ignacio Jofré, Mario Villarroel, Patricia Navarrete, Magdalena Esparza, Fernando Romero, Elías Alberto Vilches, Valentina Acevedo, and Carolina Shene
Journal of Microencapsulation, 2014, Volume 31, Number 5, Page 488
Li M. Su, Xian Liu, Yu Wang, Jin J. Li, Xiao H. Wang, Lian X. Sheng, and Yuan H. Zhao
Science of The Total Environment, 2014, Volume 484, Page 137
Mingliang Fang, Jong-Chul Kim, and Yoon-Seok Chang
Science of The Total Environment, 2014, Volume 481, Page 114
Sierra Rayne, Kaya Forest, and Ken J. Friesen
Journal of Environmental Science and Health, Part A, 2009, Volume 44, Number 6, Page 598
Xujia Zhang, Weichao Qin, Jia He, Yang Wen, Limin Su, Lianxi Sheng, and Yuanhui Zhao
Chemosphere, 2013, Volume 93, Number 2, Page 397
Isabel A. O'Connor, Mark A.J. Huijbregts, Ad M.J. Ragas, and A. Jan Hendriks
Toxicology and Applied Pharmacology, 2013, Volume 266, Number 1, Page 150
J. Boucher, F. Cengelli, D. Trumbic, and I.W. Marison
Chemosphere, 2008, Volume 70, Number 8, Page 1452
Yoshiyuki Inoue, Naoki Hashizume, Naoaki Yakata, Hidekazu Murakami, Yasuyuki Suzuki, Erina Kikushima, and Masanori Otsuka
Archives of Environmental Contamination and Toxicology, 2012, Volume 62, Number 4, Page 672
Yang Wen, Jia He, Xian Liu, Jinjie Li, and Yuanhui Zhao
Environmental Toxicology and Pharmacology, 2012, Volume 34, Number 2, Page 200
Ting Wang, Xianghong Zhou, Dali Wang, Daqiang Yin, and Zhifen Lin
Environmental Toxicology and Pharmacology, 2012, Volume 34, Number 1, Page 59
S. Dimitrov, N. Dimitrova, D. Georgieva, K. Vasilev, T. Hatfield, J. Straka, and O. Mekenyan
SAR and QSAR in Environmental Research, 2012, Volume 23, Number 1-2, Page 17
O.G. Mekenyan, S.D. Dimitrov, T.S. Pavlov, and G.D. Veith
SAR and QSAR in Environmental Research, 2005, Volume 16, Number 1-2, Page 103
A.A. Toropov, A.P. Toropova, A. Lombardo, A. Roncaglioni, E. Benfenati, and G. Gini
European Journal of Medicinal Chemistry, 2011, Volume 46, Number 4, Page 1400
Ting Wang, Zhifen Lin, Daqiang Yin, Dayong Tian, Yalei Zhang, and Deyang Kong
Environmental Toxicology and Pharmacology, 2011, Volume 32, Number 2, Page 259
L. I. N. Ezemonye, D. F. Ogeleka, and F. E. Okieimen
Chemistry and Ecology, 2007, Volume 23, Number 5, Page 373
John Nichols, Susan Erhardt, Scott Dyer, Margaret James, Margo Moore, Kathleen Plotzke, Helmut Segner, Irvin Schultz, Karluss Thomas, Luba Vasiluk, and Annie Weisbrod
Human and Ecological Risk Assessment: An International Journal, 2007, Volume 13, Number 6, Page 1164
Y. Wang, Y. Li, J. Ding, Z. Jiang, and Y. Chang
SAR and QSAR in Environmental Research, 2008, Volume 19, Number 3-4, Page 375
M. Nendza and M. Müller
SAR and QSAR in Environmental Research, 2010, Volume 21, Number 5-6, Page 495
J. Dafhne Aguirre, Alfredo M. Angeles-Boza, Abdellatif Chouai, Jean-Philippe Pellois, Claudia Turro, and Kim R. Dunbar
Journal of the American Chemical Society, 2009, Volume 131, Number 32, Page 11353
Carlos A. Blanco, Antonio Rojas, and Dieudonné Nimubona
Trends in Food Science & Technology, 2007, Volume 18, Number 3, Page 144
Korea Journal of Environmental Agriculture, 2009, Volume 28, Number 4, Page 453
Mark T.D. Cronin, John D. Walker, Joanna S. Jaworska, Michael H.I. Comber, Christopher D. Watts, and Andrew P. Worth
Environmental Health Perspectives, 2003, Volume 111, Number 10, Page 1376
Watze de Wolf, Mike Comber, Peter Douben, Sylvia Gimeno, Martin Holt, Marc Léonard, Adam Lillicrap, Dick Sijm, Roger van Egmond, Anne Weisbrod, and Graham Whale
Integrated Environmental Assessment and Management, 2007, Volume 3, Number 1, Page 3
Anne V. Weisbrod, Lawrence P. Burkhard, Jon Arnot, Ovanes Mekenyan, Philip H. Howard, Christine Russom, Robert Boethling, Yuki Sakuratani, Theo Traas, Todd Bridges, Charles Lutz, Mark Bonnell, Kent Woodburn, and Thomas Parkerton
Environmental Health Perspectives, 2006, Volume 115, Number 2, Page 255
V. R. Khairullina, A. D. Mukhametov, A. Ya. Gerchikov, G. P. Tarasov, G. G. Garifullina, L. A. Tyurina, and F. S. Zarudii
Pharmaceutical Chemistry Journal, 2009, Volume 43, Number 9, Page 505
Hong Qin, JingWen Chen, Ying Wang, Bin Wang, XueHua Li, Fei Li, and YaNan Wang
Chinese Science Bulletin, 2009, Volume 54, Number 4, Page 628

Comments (0)

Please log in or register to comment.