Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2016: 2.626
5-year IMPACT FACTOR: 3.210

CiteScore 2016: 2.45

SCImago Journal Rank (SJR) 2016: 0.972
Source Normalized Impact per Paper (SNIP) 2016: 1.049

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 79, Issue 5 (Jan 2007)

Issues

Li-air batteries: A classic example of limitations owing to solubilities

Ian Kowalczk
  • Corresponding author
  • MaxPower, Inc., 141 Christopher Lane, Harleysville, PA 19438, USA
/ Jeffery Read
  • Corresponding author
  • U.S. Army Research Laboratory, AMSRL-SE-DC, 2800 Powder Mill Road, Adelphi, MD 20783-1197, USA
/ Mark Salomon
  • Corresponding author
  • MaxPower, Inc., 141 Christopher Lane, Harleysville, PA 19438, USA
Published Online: 2009-01-01 | DOI: https://doi.org/10.1351/pac200779050851

A review is presented of the present state-of-the-art of Li-air cells and batteries. We examine the properties of this unique system in terms of the effects of solubilities of reactants and products in both nonaqueous (aprotic) and aqueous electrolyte solutions. Definite trends are observed, such as increasing cell-specific energy and capacity as both the oxygen solubility increases and viscosity decreases in organic solvents, but quantitative analyses are limited owing to the complex relations between solubility, solution viscosity, oxygen diffusion, and electrolytic conductivity. Adding to this complex relation is the dependence of the nature of the carbon-based air cathode (surface area and pore volume) upon practical specific capacities, which can be realized with Li-air cells that far exceed the specific energies and capacities of all present commercial metal-air and Li-ion cells and batteries.

Keywords: Bunsen coefficient; Li-air batteries; nonaqueous solvents; organic solvents; solubility

Conference

International Symposium on Solubility Phenomena and Related Equilibrium Processes (ISSP-12), International Symposium on Solubility Phenomena, ISSP, Solubility Phenomena, 12th, Freiberg, Germany, 2006-07-23–2006-07-28

References

  • 1.

    D. Linden, T. B. Reddy (Eds.). Handbook of Batteries, 3rd ed., McGraw-Hill, New York (2002).Google Scholar

  • 2.

    F. Bauman, E. L. Littauer. Proc. 26th Power Sources Conference, 229 (1978).Google Scholar

  • 3.

    W. R. Momyer, J. L. Morris. Lockheed Final Report, "Reactive Metal-Air Batteries for Automotive Propulsion." U.S. DOE Contract No. ET-78-C-03-1872, December 1979.Google Scholar

  • 4.

    W. R. Momyer, E. L. Littauer. "Development of a lithium-water-air primary battery," in Proc. 15th Intersociety Energy Conversion Engineering Conference, Seattle, 1480 (1980).Google Scholar

  • 5.

    , K. M. Abraham, Z. Jiang. J. Electrochem. Soc. 143, 1 (1996).CrossrefGoogle Scholar

  • 6.

    K. M. Abraham, Z. Jiang. U.S. Patent 5,510,209, April 23, 1996.Google Scholar

  • 7.

    , J. Read. J. Electrochem. Soc. 149, A1190 (2002).CrossrefGoogle Scholar

  • 8.

    , J. Read, K. Mutolo, M. Ervin, W. Behl, J. Wolfenstine, A. Driedger, D. Foster. J. Electrochem. Soc. 150, A1351 (2003).CrossrefGoogle Scholar

  • 9.

    J. Read, A. Pitt. Proc. 41st Power Sources Conference, p. 64, 14-17 June 2004.Google Scholar

  • 10.

    J. Read. "Electrolyte formulation and temperature performance of the Li/O2 battery," Proc. 9th Electrochemical Power Sources R&D Symposium, 27-30 June 2005, Myrtle Beach, SC.Google Scholar

  • 11.

    A. Dobley, J. DiCarlo, K. M. Abraham. Proc. 41st Power Sources Conference, p. 61, 14-17 June 2004.Google Scholar

  • 12.

    , T. Kuboki, T. Okuyama, T. Ohsaki, N. Takami. J. Power Sources 146, 766 (2005).CrossrefGoogle Scholar

  • 13.

    , J. Read. J. Electrochem. Soc. 153, A96 (2006).CrossrefGoogle Scholar

  • 14.

    A. J. Bard, R. Parsons, J. Jordan. Standard Potentials in Aqueous Solution, Marcel Dekker, New York (1985).Google Scholar

  • 15.

    I. Kowalczk, M. Salomon. Unpublished data (in course of publication).Google Scholar

  • 16.

    , A. J. Masters, P. A. Madden. J. Chem. Phys. 74, 2450 (1981).CrossrefGoogle Scholar

  • 17.

    B. Meyer, M. Salomon, D. Foster. Electrospun Membranes for Li-Ion Batteries, Abstract 119, presented at the 209th meeting of the Electrochemical Society, Denver, CO, 7-12 May 2006.Google Scholar

  • 18.

    MaxPower program on Ambient Temperature Li-Based Reserve Batteries, U.S. Army Contract No. W911QX-05-C-011.Google Scholar

  • 19.

    J. Fu, U.S. Patent 6,485,622, November 26, 2002 and earlier patents cited therein.Google Scholar

  • 20.

    Alupower, Inc. Electrochemical Cathode and Materials Therefore, U.S. Patent 5,053,375, October 1, 1991.Google Scholar

About the article

Published Online: 2009-01-01

Published in Print: 2007-01-01


Citation Information: Pure and Applied Chemistry, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/pac200779050851.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in