Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2016: 2.626
5-year IMPACT FACTOR: 3.210

CiteScore 2016: 2.45

SCImago Journal Rank (SJR) 2016: 0.972
Source Normalized Impact per Paper (SNIP) 2016: 1.049

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 80, Issue 1 (Jan 2008)

Issues

Quest for the ideal olefin metathesis catalyst

Anna Michrowska
  • Corresponding author
  • Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karol Grela
  • Corresponding author
  • Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-01-01 | DOI: https://doi.org/10.1351/pac200880010031

Attempts were made to create a catalyst that approaches Gladysz's vision of an "ideal catalyst". Modifications of the Hoveyda-Grubbs catalyst were carried out with the aim to increase its activity and broaden the scope of its applicability to challenging metathesis reactions. This was done by introduction of an electron-withdrawing substituent on the isopropoxybenzylidene group in order to diminish the donor properties of the oxygen atom. The resulting stable and easily accessible nitro-substituted Hoveyda-Grubbs catalyst has found a number of successful applications in various research and industrial laboratories. Also, a new concept for noncovalent immobilization of a ruthenium olefin metathesis catalyst is presented. The 2-isopropoxybenzylidene ligand of Hoveyda-Grubbs carbene is further modified by an additional amino group, and immobilization is achieved by treatment with sulfonated polystyrene, forming the corresponding ammonium salt. In this novel strategy for the immobilization of ruthenium-based metathesis catalysts, the amino group plays a dual role, being first an active anchor for immobilization and secondly, after protonation, activating the catalysts by electron-donating to -withdrawing switch. The same concept has been used in the preparation of a quaternary ammonium catalyst for aqueous olefin metathesis.

Keywords: carbenes; catalysis; green chemistry; immobilization; olefin metathesis; ruthenium

References

  • 1.

    , J. A. Gladysz. Pure Appl. Chem. 73, 1319 (2001).CrossrefGoogle Scholar

  • 2.

    Precisely, the common Ru-based olefin metathesis catalysts should be called precatalysts: "Compounds that are well-characterized, and that under some conditions will catalyse the metathesis of olefins, but that have not been proven to be essentially identical to the active species for the metathesis reaction, are not well-defined catalysts. They are catalyst precursors, or (pre)catalysts." R. R. Schrock. J. Mol. Catal. A: Chem. 213, 21 (2004).Google Scholar

  • 3.

    , S. Maechling, M. Zaja, S. Blechert. Adv. Synth. Catal. 347, 1413 (2005).CrossrefGoogle Scholar

  • 4.

    , D. Astruc. New J. Chem. 29, 42 (2005).CrossrefGoogle Scholar

  • 5.

    R. H. Grubbs. Handbook of Metathesis, Vols. 1-3, R. H. Grubbs (Ed.), Wiley-VCH, Weinheim (2003).Google Scholar

  • 6. (a)

    , R. H. Grubbs, S. Chang. Tetrahedron 54, 4413 (1998);CrossrefGoogle Scholar

  • 6. (b)

    R.R. Schrock. Top. Organomet. Chem. 1, 31 (1998);Google Scholar

  • 6. (c)

    , A. Furstner. Angew. Chem., Int. Ed. 39, 3012 (2000);CrossrefGoogle Scholar

  • 6. (d)

    , T. M. Trnka, R. H. Grubbs. Acc. Chem. Res. 34, 18 (2001);CrossrefGoogle Scholar

  • 6. (e)

    , A. H. Hoveyda, R. R. Schrock. Chem. Eur. J. 7, 945 (2001);CrossrefGoogle Scholar

  • 6. (f)

    , R. R. Schrock, A. H. Hoveyda. Angew. Chem., Int. Ed. 38, 4555 (2003);CrossrefGoogle Scholar

  • 6. (g)

    , R. R. Schrock. Pure Appl. Chem. 66, 1447 (1994);CrossrefGoogle Scholar

  • 6. (h)

    , J. S. Murdzek, R. R. Schrock. Organometallics 6, 1373 (1987).CrossrefGoogle Scholar

  • 7.

    <http://nobelprize.org/chemistry/laureates/2005/chemadv05.pdf > for more details.Google Scholar

  • 8. (a)

    , J. S . Kingsbury, J. P. Harrity, A. P. J. Bonitatebus, A. H. Hoveyda. J. Am. Chem. Soc. 121, 791 (1999);CrossrefGoogle Scholar

  • 8. (b)

    , S. B. Garber, J. S. Kingsbury, B. L. Gray, A. H. Hoveyda. J. Am. Chem. Soc. 122, 8168 (2000);CrossrefGoogle Scholar

  • 8. (c)

    , S. Gessler, S. Randl, S. Blechert. Tetrahedron Lett. 41, 9973 (2000).CrossrefGoogle Scholar

  • 9.

    , A. H. Hoveyda, D. G. Gillingham, J. J. Van Veldhuizen, O. Kataok, S.B. Garber, J. S. Kingsbury, J. P. A. Harrity. Org. Biomol. Chem. 2, 8 (2004).CrossrefGoogle Scholar

  • 10. (a)

    , H. Wakamatsu, S. Blechert. Angew. Chem., Int. Ed. 41, 794 (2002);CrossrefGoogle Scholar

  • 10. (b)

    , H. Wakamatsu, S.Blechert. Angew. Chem., Int. Ed. 41, 2403 (2002);CrossrefGoogle Scholar

  • 10. (c)

    , A. M. Dunne, S. Mix, S. Blechert. Tetrahedron Lett. 44, 2733 (2003).CrossrefGoogle Scholar

  • 11.

    A. M. Thayer. Chem. Eng. News 85, 37 (2007).Google Scholar

  • 12.

    , A. Michrowska, S. Harutyunyan, K. Grela. Angew. Chem., Int. Ed. 41, 4038 (2002).CrossrefGoogle Scholar

  • 13. (a)

    , A. Michrowska, R. Bujok, S. Harutyunyan, V. Sashuk, G. Dolgonos, K. Grela. J. Am. Chem. Soc. 126, 9318 (2004);CrossrefGoogle Scholar

  • 13. (b)

    A. Michrowska, S. Harutyunyan, K. Grela. In Catalysts for Fine Chemical Synthesis, S. Roberts, (Ed.), p. 169, Wiley Interscience, New York (2004);Google Scholar

  • 13. (c)

    K. Grela. U.S. Patent 6, 867,303.Google Scholar

  • 14. (a)

    , K. Grela, A. Michrowska, M. Bieniek, M. Kim, R. Klajn. Tetrahedron 59, 4525 (2003);CrossrefGoogle Scholar

  • 14. (b)

    , O.M. Demchuk, K. M. Pietrusiewicz, A. Michrowska, K. Grela. Org. Lett. 5, 3217 (2003);CrossrefGoogle Scholar

  • 14. (c)

    , N.Vinokurov, A. Michrowska, A. Szmigielska, Z. Drzazga, G. Wojciuk, O. M Demchuk, K.Grela, K. M. Pietrusiewicz, H. Butenschon. Adv. Synth. Catal. 348, 931 (2006);CrossrefGoogle Scholar

  • 14. (d)

    A. Mikus, V. Sashuk, M. Kedziorek, C. Samojlowicz, S. Ostrowski, K. Grela. Synlett 1142 (2005).Google Scholar

  • 15.

    C. Samojlowicz, V. Sashuk, A. Szadkowska, K. Grela. Unpublished results.Google Scholar

  • 16.

    , B. Schmidt, S. Nave. Adv. Synth. Catal. 349, 215 (2007).CrossrefGoogle Scholar

  • 17. (a)

    , S. T. Diver, A. A. Kulkarni, D. A. Clark, B. P. Peppers. J. Am. Chem. Soc. 129, 5832 (2007);CrossrefGoogle Scholar

  • 17. (b)

    , B. R. Galan, K. P. Kalbarczyk, S. Szczepankiewicz, J. B. Keister, S. T. Diver. Org. Lett. 9, 1203 (2007).CrossrefGoogle Scholar

  • 18. (a)

    (-)-Sekurinine: T. Honda, H. Namiki, K. Kaneda, H. Mizutani. Org. Lett. 6, 87 (2004);CrossrefGoogle Scholar

  • 18. (b)

    (+)Viroallosekurinine: T. Honda, H. Namiki, M. Watanabe, H. Mizutani. Tetrahedron Lett. 45, 5211 (2004);CrossrefGoogle Scholar

  • 18. (c)

    Hexacyclinic acid and (+)-FR182877: T. Stellfeld, U. Bhatt, M. Kalesse. Org. Lett. 6, 3889 (2004);Google Scholar

  • 18. (d)

    , (+)-FR901464: B. J. Albert, A. Sivaramakrishnan, T. Naka, K. Koide. J. Am. Chem. Soc. 128, 2792 (2006);CrossrefGoogle Scholar

  • 18. (e)

    , B. J. Albert, A. Sivaramakrishnan, T. Naka, N. L. Czaicki, K. Koide. J. Am. Chem. Soc. 129, 2648 (2007);CrossrefGoogle Scholar

  • 18. (f)

    Porphyrinfullerene dyad: S. Ostrowski, A.Mikus. Mol. Divers. 6, 315 (2003);Google Scholar

  • 18. (g)

    Porphyrin building blocks: S. Ostrowski, A. Mikus. Heterocycles 65, 2339 (2005);CrossrefGoogle Scholar

  • 18. (h)

    , S. M Goldup, C. J. Pilkington, A. J. P. White, A. Burton, A.G.M. Barrett. J. Org. Chem. 71, 6185 (2006);CrossrefGoogle Scholar

  • 18. (i)

    (+)-N-Boc-norpandamarilactonine-A: T.Honda, M. Ushiwata, H. Mizutani. Tetrahedron Lett. 47, 6251 (2006).Google Scholar

  • 19.

    , J. Frelek, P. Kowalska, M. Masnyk, A. Kazimierski, A. Korda, M. Woznica, M. Chmielewski, F.Furche. Chem. Eur. J. 13, 6732 (2007).CrossrefGoogle Scholar

  • 20.

    The improved functional group tolerance toward the protic functionalities can be attributed to the higher reactivity toward olefins exhibited by 6.Google Scholar

  • 21.

    For further reading, see the following review article: K. Grela, A. Michrowska, M. Bieniek. Chem. Rec. 6, 144 (2006) and refs. cited therein.CrossrefGoogle Scholar

  • 22. (a)

    , D. Lamarre, P. C. Anderson, M. D. Bailey, P. Beaulieu, G. Bolger, P. Bonneau, M. Bos, D.R.Cameron, M. Cartier, M. G. Cordingley, A. M. Faucher, N. Goudreau, S. H. Kawai, G.Kukolj, L. Lagace, S. R. LaPlante, H. Narjes, M. A. Poupart, J. Rancourt, R. E. Sentjens, R.St.George, B. Simoneau, G. Steinmann, D. Thibeault, Y. S. Tsantrizos, S. M. Weldon, C.L.Yong, M. Llinas Brunet. Nature 426, 186 (2003);CrossrefGoogle Scholar

  • 22. (b)

    PTC Patent Application WO 2004/089974 A1, Boehringer Ingelheim (2004);Google Scholar

  • 22. (c)

    , T. Nicola, M. Brenner, K. Donsbach, P.Kreye. Org. Proc. Res. Devel. 9, 513 (2005).CrossrefGoogle Scholar

  • 23.

    PTC Patent Application WO 2006/075021 A1, Boehringer Ingelheim (2006).Google Scholar

  • 24.

    , H. Clavier, K. Grela, A. Kirschning, M. Mauduit, S. P. Nolan. Angew. Chem., Int. Ed. 46, 6786 (2007).CrossrefGoogle Scholar

  • 25. (a)

    A. Michrowska, Ł. Gulajski, K. Grela. Chem. Commun. 841 (2005) and refs. cited therein;Google Scholar

  • 25. (b)

    , J. C. Conrad, D. E. Fogg. Curr. Org. Chem. 10, 185 (2006).CrossrefGoogle Scholar

  • 26. (a)

    , J. S. Kingsbury, A. H. Hoveyda. In Polymeric Materials in Organic Synthesis and Catalysis, M. R. Buchmeiser (Eds.), pp. 467-502, Wiley-VCH, Weinheim (2003);CrossrefGoogle Scholar

  • 26. (b)

    , M. R. Buchmeiser. New J. Chem. 28, 549 (2004).CrossrefGoogle Scholar

  • 27. (a)

    A. Kirschning, G. Jas. In Immobilized Catalysts, A. Kirschning (Ed.), Top. Curr. Chem. 242, 209 (2004);Google Scholar

  • 27. (b)

    , A. Kirschning, G. Jas. Chem. Eur. J. 9, 5708 (2003);CrossrefGoogle Scholar

  • 27. (c)

    , P. D. I. Fletcher, S.J.Haswell, E. Pombo-Villar, B. H. Warrington, P. Watts, S. Y. Wong, X. Zhang. Tetrahedron 58, 4735 (2002).CrossrefGoogle Scholar

  • 28.

    U. Kunz, S. Leue, F. Stuhlmann, G. Sourkouni-Argirusi, H. Wen, G. Jas, A. Kirschning. Eur. J. Org. Chem. 3601 (2004).Google Scholar

  • 29.

    For an excellent review on strategies of non-covalent immobilization of catalysts, refer to: J.Horn, F. Michalek, C. C. Tzschucke, W. Bannwarth. In Immobilized Catalysts, A. Kirschning (Ed.), Top. Curr. Chem. 242, 43 (2004).Google Scholar

  • 30.

    K. Mennecke, K. Grela, U. Kunz, A. Kirschning. Synlett 2948 (2005).Google Scholar

  • 31.

    A. Michrowska, Ph.D. thesis, Institute of Organic Chemistry, Warsaw (2006).Google Scholar

  • 32.

    , Ł. Gulajski, A. Michrowska, R. Bujok, K. Grela. J. Mol. Catal. A: Chem. 254, 118 (2006).CrossrefGoogle Scholar

  • 33.

    , A. Michrowska, K. Mennecke, U. Kunz, A. Kirschning, K. Grela. J. Am. Chem. Soc. 128, 13261 (2006).CrossrefGoogle Scholar

  • 34.

    , J. S. Kingsbury, S. B. Garber, J. M. Giftos, B. L. Gray, M. M. Okamoto, R. A. Farrer, J. T. Fourkas, A. H. Hoveyda. Angew. Chem., Int. Ed. 40, 4251 (2001).CrossrefGoogle Scholar

  • 35.

    A. Kirschning, K. Harmrolfs, K. Mennecke, J. Messinger, U. Schon, K. Grela. Unpublished results.Google Scholar

  • 36. (a)

    , A. Michrowska, Ł. Gulajski, Z. Kaczmarska, K. Mennecke, A. Kirschning, K. Grela. Green Chem. 8, 685 (2006);CrossrefGoogle Scholar

  • 36. (b)

    A. Michrowska, Ł. Gulajski, K. Grela. Chem. Today 24, 19 (2006).Google Scholar

  • 37. (a)

    , J. S. Connon, M. Rivard, M. Zaja, S. Blechert. Adv. Synth. Catal. 345, 572 (2003);CrossrefGoogle Scholar

  • 37. (b)

    , K.J.Davis, D. Sinou. Mol. Catal. A: Chem. 177, 173 (2002);CrossrefGoogle Scholar

  • 37. (c)

    , D. Rix, H. Clavier, Y. Coutard, L. Gulajski, K.Grela, M. Mauduit. J. Organomet. Chem. 691, 5397 (2006);CrossrefGoogle Scholar

  • 37. (d)

    , J. B. Binder, I. A. Guzei, R.T.Raines. Adv. Synth. Catal. 349, 395 (2007);CrossrefGoogle Scholar

  • 37. (e)

    , J. P. Jordan, R. H. Grubbs. Angew. Chem., Int. Ed. 46, 5152 (2007).CrossrefGoogle Scholar

About the article

Published Online: 2009-01-01

Published in Print: 2008-01-01


Citation Information: Pure and Applied Chemistry, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/pac200880010031.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Michael J. Williams, Jongrock Kong, Cheol K. Chung, Andrew Brunskill, Louis-Charles Campeau, and Mark McLaughlin
Organic Letters, 2016, Volume 18, Number 9, Page 1952
[2]
Alev Tüzün, Gerard Lligadas, Juan C. Ronda, Marina Galià, and Virginia Cádiz
European Polymer Journal, 2016, Volume 75, Page 56
[3]
Takashi Matsuo, Takefumi Yoshida, Akira Fujii, Keiya Kawahara, and Shun Hirota
Organometallics, 2013, Volume 32, Number 19, Page 5313
[4]
Karolina Żukowska, Anna Szadkowska, Bartosz Trzaskowski, Aleksandra Pazio, Łukasz Pączek, Krzysztof Woźniak, and Karol Grela
Organometallics, 2013, Volume 32, Number 7, Page 2192
[5]
Percy van der Gryp, Sanette Marx, and Hermanus C.M. Vosloo
Journal of Molecular Catalysis A: Chemical, 2012, Volume 355, Page 85
[6]
Mark C. McMills, Ross J. Humes, and Oksana M. Pavlyuk
Tetrahedron Letters, 2012, Volume 53, Number 7, Page 849
[7]
Valdemiro P. Carvalho, Camila P. Ferraz, and Benedito S. Lima-Neto
Journal of Molecular Catalysis A: Chemical, 2010, Volume 333, Number 1-2, Page 46
[8]
Erin M. Leitao, Edwin F. van der Eide, Patricio E. Romero, Warren, E. Piers, and Robert McDonald
Journal of the American Chemical Society, 2010, Volume 132, Number 8, Page 2784
[9]
James W. Herndon
Coordination Chemistry Reviews, 2010, Volume 254, Number 1-2, Page 103
[10]
Ana Aljarilla, J. Cristóbal López, and Joaquín Plumet
European Journal of Organic Chemistry, 2010, Volume 2010, Number 32, Page 6123
[11]
Eyal Tzur, Amos Ben-Asuly, Charles E. Diesendruck, Israel Goldberg, and N. Gabriel Lemcoff
Angewandte Chemie International Edition, 2008, Volume 47, Number 34, Page 6422
[12]
Eyal Tzur, Amos Ben-Asuly, Charles E. Diesendruck, Israel Goldberg, and N. Gabriel Lemcoff
Angewandte Chemie, 2008, Volume 120, Number 34, Page 6522
[13]
Daniel Burtscher and Karol Grela
Angewandte Chemie, 2009, Volume 121, Number 3, Page 450
[14]
Daniel Burtscher and Karol Grela
Angewandte Chemie International Edition, 2009, Volume 48, Number 3, Page 442
[15]
Charles E. Diesendruck, Eyal Tzur, and N. Gabriel Lemcoff
European Journal of Inorganic Chemistry, 2009, Volume 2009, Number 28, Page 4185
[16]
Katarzyna Jarzembska, Sudipta Seal, Krzysztof Woźniak, Anna Szadkowska, Michał Bieniek, and Karol Grela
ChemCatChem, 2009, Volume 1, Number 1, Page 144
[17]
Johanna M. Blacquiere, Titel Jurca, Joseph Weiss, and Deryn E. Fogg
Advanced Synthesis & Catalysis, 2008, Volume 350, Number 18, Page 2849

Comments (0)

Please log in or register to comment.
Log in