Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2016: 2.626
5-year IMPACT FACTOR: 3.210

CiteScore 2016: 2.45

SCImago Journal Rank (SJR) 2016: 0.972
Source Normalized Impact per Paper (SNIP) 2016: 1.049

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 80, Issue 1 (Jan 2008)

Issues

Further conventions for NMR shielding and chemical shifts (IUPAC Recommendations 2008)

Robin K. Harris
  • Corresponding author
  • Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Edwin D. Becker / Sonia M. Cabral de Menezes
  • Corresponding author
  • PETROBRAS/CENPES/QM, Av. Horacio Macedo 950, Cidade Universitária, 21941-598, Rio de Janeiro, R.J., Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pierre Granger
  • Corresponding author
  • Institute of Chemistry, University Louis Pasteur, Strasbourg, 1 rue Blaise Pascal, 67008 Strasbourg, Cedex, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Roy E. Hoffman
  • Corresponding author
  • Department of Organic Chemistry, The Hebrew University of Jerusalem, Safra Campus, Givat Ram, Jerusalem 91904, Israel
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kurt W. Zilm
  • Corresponding author
  • Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-01-01 | DOI: https://doi.org/10.1351/pac200880010059

IUPAC has published a number of recommendations regarding the reporting of nuclear magnetic resonance (NMR) data, especially chemical shifts. The most recent publication [Pure Appl. Chem. 73, 1795 (2001)] recommended that tetramethylsilane (TMS) serve as a universal reference for reporting the shifts of all nuclides, but it deferred recommendations for several aspects of this subject. This document first examines the extent to which the 1H shielding in TMS itself is subject to change by variation in temperature, concentration, and solvent. On the basis of recently published results, it has been established that the shielding of TMS in solution [along with that of sodium-3-(trimethylsilyl)propanesulfonate, DSS, often used as a reference for aqueous solutions] varies only slightly with temperature but is subject to solvent perturbations of a few tenths of a parts per million (ppm). Recommendations are given for reporting chemical shifts under most routine experimental conditions and for quantifying effects of temperature and solvent variation, including the use of magnetic susceptibility corrections and of magic-angle spinning (MAS). This document provides the first IUPAC recommendations for referencing and reporting chemical shifts in solids, based on high-resolution MAS studies. Procedures are given for relating 13C NMR chemical shifts in solids to the scales used for high-resolution studies in the liquid phase. The notation and terminology used for describing chemical shift and shielding tensors in solids is reviewed in some detail, and recommendations are given for best practice.

Keywords: chemical shifts; conventions; IUPAC Physical and Biophysical Chemistry Division; nuclear magnetic resonance; recommendations; shielding tensors

Project Year: 2003, Project Code: 2003-006-1-100

References

  • 1.

    Pure Appl. Chem. 29, 625 (1972).Google Scholar

  • 2.

    , Pure Appl. Chem. 45, 217 (1976).CrossrefGoogle Scholar

  • 3.

    J. L. Markley, A. Bax, Y. Arata, C. W. Hilbers, R. Kaptein, B. D. Sykes, P. E. Wright, K.Wuthrich. Pure Appl. Chem. 70, 117 (1998).Google Scholar

  • 4.

    , R. K. Harris, E. D. Becker, S. Cabral de Menezes, R. Goodfellow, P. Granger. Pure Appl. Chem. 73, 1795 (2001).CrossrefGoogle Scholar

  • 5.

    , W. C. Dickinson. Phys. Rev. 81, 717 (1951).CrossrefGoogle Scholar

  • 6.

    , A. K. Jameson, C. J. Jameson. J. Am. Chem. Soc. 95, 8559 (1973).CrossrefGoogle Scholar

  • 7.

    C. J. Jameson, A. K. Jameson, S. M. Cohen. J. Magn. Reson. 19, 385 (1975).Google Scholar

  • 8.

    F. G. Morin, M. S. Solum, J. D. Withers, D. M. Grant, D. K. Dalling. J. Magn. Reson. 48, 138 (1982).Google Scholar

  • 9.

    , R. E. Hoffman, E. D. Becker. J. Magn. Reson. 176, 87 (2005).CrossrefGoogle Scholar

  • 10.

    , R. E. Hoffman. Magn. Reson. Chem. 44, 606 (2006).CrossrefGoogle Scholar

  • 11.

    , S. C.-K. Chu, Y. Xu, J. A. Balschi, C. S. Springer Jr. Magn. Reson. Med. 13, 239 (1990).CrossrefGoogle Scholar

  • 12.

    Handbook of Chemistry and Physics, 62nd ed., CRC Press, Boca Raton (1982).Google Scholar

  • 13.

    Landolt-Bornstein Zahlenwerte und Funktionen aus Physik Chemie Astronomie Geophysik und Technik, 6th ed., 2 Band, 10 Teil, Magnetic Properties II, Springer-Verlag, Berlin (1967).Google Scholar

  • 14.

    , T. M. Barbara. J. Magn. Reson. Ser. A 109, 265 (1994).CrossrefGoogle Scholar

  • 15.

    , R. E. Hoffman. J. Magn. Reson. 178, 237 (2006).CrossrefGoogle Scholar

  • 16.

    , R. E. Hoffman. J. Magn. Reson. 163, 325 (2003).CrossrefGoogle Scholar

  • 17.

    L. N. Mulay. In Techniques of Chemistry. Physical Methods of Chemistry, Part IV, A. Weissberger, B. W. Rossiter (Eds.), Wiley-Interscience, New York (1972).Google Scholar

  • 18.

    , R. Engel, D. Halpern, S. Bienenfeld. Anal. Chem. 45, 367 (1973).CrossrefGoogle Scholar

  • 19.

    , J. R. Zimmerman, M. R. Foster. J. Phys. Chem. 61, 282 (1957).CrossrefGoogle Scholar

  • 20.

    , P. W. Kuchel, B. E. Chapman, W. A. Bubb, P. E. Hansen, C. J. Durrant, M. P. Hertzberg. Conc. Magn. Reson. A 18, 56 (2003).CrossrefGoogle Scholar

  • 21.

    , P. Granger, M. Bourdonneau, O. Assemat, M. Piotto. Conc. Magn. Reson. A 30, 184 (2007).CrossrefGoogle Scholar

  • 22.

    G. W. F. Drake. In Atomic, Molecular and Optical Physics Handbook, American Institute of Physics, Woodbury, NY (1996).Google Scholar

  • 23.

    IUPAC Physical Chemistry Division. Quantities, Units and Symbols in Physical Chemistry, 2nd ed., prepared for publication by I. M. Mills, T. Cvitas, K. Homann, N. Kallay, K. Kuchitsu, Blackwell Scientific, Oxford (1993).Google Scholar

  • 24.

    , P. Raghavan. At. Data Nucl. Data Tables 42, 189 (1989).CrossrefGoogle Scholar

  • 25. (a)

    , A. Antusek, K. Jackowski, M. Jaszunski, W. Makulski, M. Wilczek. Chem. Phys. Lett. 411, 111 (2005);CrossrefGoogle Scholar

  • 25. (b)

    , W. Makulski, K. Jackowski, A. Antusek, M. Jaszunski. J. Phys. Chem. A 110, 11462 (2006);CrossrefGoogle Scholar

  • 25. (c)

    , K. Jackowski, M. Jaszunski. Conc. Magn. Reson. A 30, 246 (2007).CrossrefGoogle Scholar

  • 26.

    IUPAC Physical Chemistry Division. Quantities, Units and Symbols in Physical Chemistry, 3rd ed., prepared for publication by E. R. Cohen, T. Cvitas, J. G. Frey, B. Holmstrom, K. Kuchitsu, R. Marquardt, I. Mills, F. Pavese, M. Quack, J. Stohner, H. L. Strauss, M. Takami, A. J. Thor, RSC Publishing, Cambridge (2007).Google Scholar

  • 27.

    , C. R. Morcombe, K. W. Zilm. J. Magn. Reson. 162, 479 (2003).CrossrefGoogle Scholar

  • 28.

    E. K. Paulson, K. W. Zilm. Rev. Sci. Instrum. article 026104 76, 1 (2005).CrossrefGoogle Scholar

  • 29.

    , D. Doskocilova, D. D. Tao, B. Schneider. Czech. J. Phys. B 25, 202 (1975).CrossrefGoogle Scholar

  • 30.

    A. N. Garroway. J. Magn. Reson. 49, 168 (1982).Google Scholar

  • 31.

    W. L. Earl, D. L. VanderHart. J. Magn. Reson. 48, 35 (1982).Google Scholar

  • 32.

    D. L. VanderHart. In Encyclopedia of NMR, D. M. Grant, R. K. Harris (Eds.), pp. 2938-2946, John Wiley, Chichester (1996).Google Scholar

  • 33.

    , F. D. Doty, G. Entzminger, Y. A. Yang. Conc. Magn. Reson. 10, 133 (1998).CrossrefGoogle Scholar

  • 34.

    , F. A. L. Anet, D. J. O'Leary. Conc. Magn. Reson. 3, 193 (1991).CrossrefGoogle Scholar

  • 35.

    U. Haeberlen. In Adv. Magn. Reson. Suppl. 1, Academic Press, New York (1976).Google Scholar

  • 36.

    M. Mehring. In NMR Basic Principles and Progress, Springer-Verlag, Berlin (1976).Google Scholar

  • 37.

    , J. Mason. Solid State NMR 2, 285 (1993).CrossrefGoogle Scholar

  • 38.

    D. M. Grant. In Encyclopedia of NMR, D. M. Grant, R. K. Harris (Eds.), pp. 1298-1321, John Wiley, Chichester (1996).Google Scholar

  • 39.

    , R. K. Harris. Solid State NMR 10, 177 (1998).CrossrefGoogle Scholar

  • 40.

    , C. J. Jameson. Solid State NMR 11, 265 (1998).CrossrefGoogle Scholar

  • 41.

    M. H. Levitt. Spin Dynamics, p. 204, John Wiley, Chichester (2001).Google Scholar

  • 42.

    J. A. S. Smith. J. Chem. Educ. 48, 39 (1971).CrossrefGoogle Scholar

  • 43.

    , L. Ramakrishnan, S. Soundararajan, V. S. S. Sastry, J. Ramakrishna. Coord. Chem. Rev. 22, 123 (1977).CrossrefGoogle Scholar

About the article

Published Online: 2009-01-01

Published in Print: 2008-01-01


Citation Information: Pure and Applied Chemistry, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/pac200880010059.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Eric G. Keeler, Vladimir K. Michaelis, Michael T Colvin, Ivan Hung, Peter L. Gor'kov, Timothy A. Cross, Zhehong Gan, and Robert G. Griffin
Journal of the American Chemical Society, 2017
[2]
Wade C. Henke, Davide Lionetti, William N. G. Moore, Julie A. Hopkins, Victor W. Day, and James D. Blakemore
ChemSusChem, 2017
[3]
Martin Mangstl, Vinicius R. Celinski, Christian Pritzel, Reinhard Trettin, and Jörn Schmedt auf der Günne
Zeitschrift für anorganische und allgemeine Chemie, 2017
[4]
Chongwei Zhu, Emmanuel Gras, Carine Duhayon, Francis Lacassin, Xiuling Cui, and Remi Chauvin
Chemistry - An Asian Journal, 2017
[5]
Piotr Garbacz and Włodzimierz Makulski
Chemical Physics, 2017
[6]
Nicholas E. Smith, Wesley H. Bernskoetter, Nilay Hazari, and Brandon Q. Mercado
Organometallics, 2017
[7]
Elizabeth A. Pogue, Andre Sutrisno, Nicole E. Johnson, Daniel P. Shoemaker, and Angus A. Rockett
Inorganic Chemistry, 2017
[8]
Philipp Stock, Dennis Wiedemann, Holm Petzold, and Gerald Hörner
Inorganics, 2017, Volume 5, Number 3, Page 60
[9]
Leonid B. Krivdin
Progress in Nuclear Magnetic Resonance Spectroscopy, 2017
[10]
Guy M. Bernard, Atul Goyal, Mark Miskolzie, Ryan McKay, Qichao Wu, Roderick E. Wasylishen, and Vladimir K. Michaelis
Journal of Magnetic Resonance, 2017, Volume 283, Page 14
[11]
Dmitry O. Samultsev, Valentin A. Semenov, and Leonid B. Krivdin
Magnetic Resonance in Chemistry, 2017
[12]
S. V. Fedorov, Yu. Yu. Rusakov, and L. B. Krivdin
Russian Journal of Organic Chemistry, 2017, Volume 53, Number 5, Page 643
[14]
Christopher Benndorf, Hellmut Eckert, and Oliver Janka
Accounts of Chemical Research, 2017, Volume 50, Number 6, Page 1459
[16]
Ihor Hlova, Jennifer F. Goldston, Shalabh Gupta, Takeshi Kobayashi, Marek Pruski, and Vitalij K. Pecharsky
Journal of Materials Science, 2017, Volume 52, Number 20, Page 11900
[17]
Chia-Hsin Chen, Daphna Shimon, Jason J. Lee, Stephanie A. Didas, Anil K. Mehta, Carsten Sievers, Christopher W. Jones, and Sophia E. Hayes
Environmental Science & Technology, 2017, Volume 51, Number 11, Page 6553
[18]
Kay Hagedorn, Ulrich Bahnmüller, Andreas Schachtschneider, Maren Frei, Wenyu Li, Jörn Schmedt auf der Günne, and Sebastian Polarz
ACS Applied Materials & Interfaces, 2017, Volume 9, Number 13, Page 11599
[19]
Tiago Venâncio, Lyege Magalhaes Oliveira, Javier Ellena, Nubia Boechat, and Steven P. Brown
Solid State Nuclear Magnetic Resonance, 2017
[20]
Claudia Schindler and Carola Schulzke
Inorganic Chemistry Communications, 2017, Volume 77, Page 80
[21]
Robert F. Moran, Daniel M. Dawson, and Sharon E. Ashbrook
International Reviews in Physical Chemistry, 2017, Volume 36, Number 1, Page 39
[22]
Tahani Mala’bi, Shmuel Cohen, Sergey Pogodin, and Israel Agranat
Structural Chemistry, 2017, Volume 28, Number 2, Page 511
[23]
Ichhuk Karki, Martin T. Christen, Justin Spiriti, Ryan L. Slack, Masayuki Oda, Kenji Kanaori, Daniel M. Zuckerman, and Rieko Ishima
The Journal of Physical Chemistry B, 2016, Volume 120, Number 49, Page 12420
[24]
Fábio A. L. de Souza, Alan R. Ambrozio, Everson S. Souza, Daniel F. Cipriano, Wanderlã L. Scopel, and Jair C. C. Freitas
The Journal of Physical Chemistry C, 2016, Volume 120, Number 48, Page 27707
[26]
G. N. Manjunatha Reddy, Michal Malon, Andrew Marsh, Yusuke Nishiyama, and Steven P. Brown
Analytical Chemistry, 2016, Volume 88, Number 23, Page 11412
[27]
Bethany G. Caulkins, Robert P. Young, Ryan A. Kudla, Chen Yang, Thomas J. Bittbauer, Baback Bastin, Eduardo Hilario, Li Fan, Michael J. Marsella, Michael F. Dunn, and Leonard J. Mueller
Journal of the American Chemical Society, 2016, Volume 138, Number 46, Page 15214
[28]
Vinicius R. Celinski, Michael Ditter, Florian Kraus, Franz Fujara, and Jörn Schmedt auf der Günne
Chemistry - A European Journal, 2016, Volume 22, Number 51, Page 18388
[29]
Joshua D. Hartman, Graeme M. Day, and Gregory J. O. Beran
Crystal Growth & Design, 2016, Volume 16, Number 11, Page 6479
[31]
David J. Charboneau, David Balcells, Nilay Hazari, Hannah M. C. Lant, James M. Mayer, Patrick R. Melvin, Brandon Q. Mercado, Wesley D. Morris, Michal Repisky, and Hee-Won Suh
Organometallics, 2016, Volume 35, Number 18, Page 3154
[32]
Izabella Jastrzebska, Tomasz Pawlak, Rafael Arcos-Ramos, Edwin Florez-Lopez, Norberto Farfán, Dorota Czajkowska-Szczykowska, Jadwiga Maj, Rosa Santillan, Jacek W. Morzycki, and Marek J. Potrzebowski
Crystal Growth & Design, 2016, Volume 16, Number 10, Page 5698
[33]
Eric G. Keeler, Vladimir K. Michaelis, and Robert G. Griffin
The Journal of Physical Chemistry B, 2016, Volume 120, Number 32, Page 7851
[34]
Anna Korytkowska-Wałach, Beata Dubrawska, Monika Śmiga-Matuszowicz, and Tadeusz Bieg
Journal of Molecular Structure, 2017, Volume 1127, Page 532
[35]
Joshua D. Hartman, Ryan A. Kudla, Graeme M. Day, Leonard J. Mueller, and Gregory J. O. Beran
Phys. Chem. Chem. Phys., 2016, Volume 18, Number 31, Page 21686
[36]
Stanislav L. Veinberg, Karen E. Johnston, Michael J. Jaroszewicz, Brianna M. Kispal, Christopher R. Mireault, Takeshi Kobayashi, Marek Pruski, and Robert W. Schurko
Phys. Chem. Chem. Phys., 2016, Volume 18, Number 26, Page 17713
[37]
Michelle C. Neary and Gerard Parkin
Dalton Trans., 2016, Volume 45, Number 37, Page 14645
[38]
Alexander Idström, Staffan Schantz, Johan Sundberg, Bradley F. Chmelka, Paul Gatenholm, and Lars Nordstierna
Carbohydrate Polymers, 2016, Volume 151, Page 480
[39]
Andreas Brinkmann, Maohui Chen, Martin Couillard, Zygmunt J. Jakubek, Tianyang Leng, and Linda J. Johnston
Langmuir, 2016, Volume 32, Number 24, Page 6105
[40]
Muzaddid Sarker, Kathleen E. Orrell, Lingling Xu, Marie-Laurence Tremblay, Jessi J. Bak, Xiang-Qin Liu, and Jan K. Rainey
Biochemistry, 2016, Volume 55, Number 21, Page 3048
[41]
Jiří Czernek and Jiří Brus
Chemical Physics Letters, 2016, Volume 655-656, Page 66
[42]
Elizabeth A. Pedrick, Jason W. Schultz, Guang Wu, Liviu M. Mirica, and Trevor W. Hayton
Inorganic Chemistry, 2016, Volume 55, Number 11, Page 5693
[43]
Dmitry O. Samultsev, Yury Yu. Rusakov, and Leonid B. Krivdin
Magnetic Resonance in Chemistry, 2016, Volume 54, Number 10, Page 787
[44]
E.L. Lindh, P. Stilbs, and I. Furó
Journal of Magnetic Resonance, 2016, Volume 268, Page 18
[45]
Sharon E. Ashbrook and David McKay
Chem. Commun., 2016, Volume 52, Number 45, Page 7186
[46]
Kay Hagedorn, Wenyu Li, Qijun Liang, Stefan Dilger, Matthias Noebels, Markus. R. Wagner, Juan S. Reparaz, Andreas Dollinger, Jörn Schmedt auf der Günne, Thomas Dekorsy, Lukas Schmidt-Mende, and Sebastian Polarz
Advanced Functional Materials, 2016, Volume 26, Number 20, Page 3424
[47]
Anna Pulte, Silke Wagner, Herbert Kogler, and Peter Spiteller
Journal of Natural Products, 2016, Volume 79, Number 4, Page 873
[48]
Martin Jarenmark, Göran Carlström, Lisa A. Fredin, Joachim Hedberg Wallenstein, Isa Doverbratt, Maria Abrahamsson, and Petter Persson
Inorganic Chemistry, 2016, Volume 55, Number 6, Page 3015
[49]
Kinga Salus, Marcin Hoffmann, Bożena Wyrzykiewicz, and Donata Pluskota-Karwatka
New J. Chem., 2016, Volume 40, Number 4, Page 3875
[50]
Elizabeth A. Pedrick, Lani A. Seaman, Joshua C. Scott, Leonel Griego, Guang Wu, and Trevor W. Hayton
Organometallics, 2016, Volume 35, Number 4, Page 494
[51]
Kirsi Harju, Harri Koskela, Anke Kremp, Sanna Suikkanen, Pablo de la Iglesia, Christopher O. Miles, Bernd Krock, and Paula Vanninen
Toxicon, 2016, Volume 112, Page 68
[52]
Danil E. Smiles, Guang Wu, Peter Hrobárik, and Trevor W. Hayton
Journal of the American Chemical Society, 2016, Volume 138, Number 3, Page 814
[54]
Charlene Tsay, Brooke N. Livesay, Samantha Ruelas, and Jenny Y. Yang
Journal of the American Chemical Society, 2015, Volume 137, Number 44, Page 14114
[55]
Tyler B. Coplen
Rapid Communications in Mass Spectrometry, 2011, Volume 25, Number 17, Page 2538
[56]
Aiden J. Robertson, Manoj Kumar Pandey, Andrew Marsh, Yusuke Nishiyama, and Steven P. Brown
Journal of Magnetic Resonance, 2015, Volume 260, Page 89
[57]
A.A. Kondrasenko, E.V. Goncharov, K.P. Dugaev, and A.I. Rubaylo
Forensic Science International, 2015, Volume 257, Page 209
[58]
Antonio Franconetti, Lidia Contreras-Bernal, Rafael Prado-Gotor, and Francisca Cabrera-Escribano
RSC Adv., 2015, Volume 5, Number 91, Page 74274
[59]
Bogdan A. Marekha, Oleg N. Kalugin, Marc Bria, and Abdenacer Idrissi
Phys. Chem. Chem. Phys., 2015, Volume 17, Number 35, Page 23183
[60]
Valentin A. Semenov, Dmitry O. Samultsev, Alexander Yu. Rulev, and Leonid B. Krivdin
Magnetic Resonance in Chemistry, 2015, Volume 53, Number 12, Page 1031
[61]
Elizabeth A. Pedrick, Guang Wu, and Trevor W. Hayton
Inorganic Chemistry, 2015, Volume 54, Number 14, Page 7038
[62]
[64]
Kritsana Sagarik, Pannipa Panajapo, Mayuree Phonyiem, and Jittima Thisuwan
International Journal of Quantum Chemistry, 2015, Volume 115, Number 17, Page 1161
[65]
Yury Yu. Rusakov, Irina L. Rusakova, and Leonid B. Krivdin
Magnetic Resonance in Chemistry, 2015, Volume 53, Number 7, Page 485
[66]
Sergey V. Fedorov, Yury Yu. Rusakov, and Leonid B. Krivdin
The Journal of Physical Chemistry A, 2015, Volume 119, Number 22, Page 5778
[67]
Aaron Sattler and Gerard Parkin
Organometallics, 2015, Volume 34, Number 10, Page 1828
[68]
Lindsay A. Baker, Mark Daniëls, Elwin A. W. van der Cruijsen, Gert E. Folkers, and Marc Baldus
Journal of Biomolecular NMR, 2015, Volume 62, Number 2, Page 199
[69]
Evgeniy Papulovskiy, Dzhalil F. Khabibulin, Victor V. Terskikh, Eugene A. Paukshtis, Valentina M. Bondareva, Aleksandr A. Shubin, Andrey S. Andreev, and Olga Lapina
The Journal of Physical Chemistry C, 2015, Volume 119, Number 19, Page 10400
[70]
Valentin A. Semenov, Dmitry O. Samultsev, and Leonid B. Krivdin
Magnetic Resonance in Chemistry, 2015, Volume 53, Number 6, Page 433
[71]
Cory M. Widdifield, Frédéric A. Perras, and David L. Bryce
Phys. Chem. Chem. Phys., 2015, Volume 17, Number 15, Page 10118
[72]
Marco Grisi, Gabriele Gualco, and Giovanni Boero
Review of Scientific Instruments, 2015, Volume 86, Number 4, Page 044703
[73]
Shanmin Zhang
Journal of Biophysical Chemistry, 2011, Volume 02, Number 03, Page 208
[74]
Stefanie Eriksson, Samo Lasič, Markus Nilsson, Carl-Fredrik Westin, and Daniel Topgaard
The Journal of Chemical Physics, 2015, Volume 142, Number 10, Page 104201
[75]
Alexey Marchuk, Vinicius R. Celinski, Jörn Schmedt auf der Günne, and Wolfgang Schnick
Chemistry - A European Journal, 2015, Volume 21, Number 15, Page 5836
[76]
Parichart Suwannakham, Sermsiri Chaiwongwattana, and Kritsana Sagarik
International Journal of Quantum Chemistry, 2015, Volume 115, Number 8, Page 486
[77]
Sven Bach, Vinicius R. Celinski, Michael Dietzsch, Martin Panthöfer, Ralf Bienert, Franziska Emmerling, Jörn Schmedt auf der Günne, and Wolfgang Tremel
Journal of the American Chemical Society, 2015, Volume 137, Number 6, Page 2285
[78]
Włodzimierz Makulski
Magnetic Resonance in Chemistry, 2015, Volume 53, Number 4, Page 273
[79]
Florian J. Pucher, Constantin Frhr. von Schirnding, Franziska Hummel, Vinicius R. Celinski, Jörn Schmedt auf der Günne, Birgit Gerke, Rainer Pöttgen, and Wolfgang Schnick
European Journal of Inorganic Chemistry, 2015, Volume 2015, Number 3, Page 382
[80]
Jiayi Wang, Michèle R. Prinsep, Dennis P. Gordon, Michael J. Page, and Brent R. Copp
Journal of Natural Products, 2015, Volume 78, Number 3, Page 530
[81]
Mikuláš Peksa, Jan Lang, and Frank Stallmach
Microporous and Mesoporous Materials, 2015, Volume 205, Page 11
[82]
Sergey V. Fedorov, Yury Yu. Rusakov, and Leonid B. Krivdin
Magnetic Resonance in Chemistry, 2014, Volume 52, Number 11, Page 699
[84]
Valentin A. Semenov, Dmitry O. Samultsev, and Leonid B. Krivdin
Magnetic Resonance in Chemistry, 2014, Volume 52, Number 11, Page 686
[85]
Antonio Franconetti, Lidia Contreras-Bernal, Sorel Jatunov, Manuel Gómez-Guillén, Manuel Angulo, Rafael Prado-Gotor, and Francisca Cabrera-Escribano
Physical Chemistry Chemical Physics, 2014, Volume 16, Number 34, Page 18442
[86]
Roy E. Hoffman, Eliezer Darmon, Abraham Aserin, and Nissim Garti
Journal of Colloid and Interface Science, 2016, Volume 463, Page 349
[87]
Martin Mangstl, Vinicius R. Celinski, Sebastian Johansson, Johannes Weber, Feng An, and Jörn Schmedt auf der Günne
Dalton Trans., 2014, Volume 43, Number 26, Page 10033
[88]
Guido F. Pauli, Shao-Nong Chen, David C. Lankin, Jonathan Bisson, Ryan J. Case, Lucas R. Chadwick, Tanja Gödecke, Taichi Inui, Aleksej Krunic, Birgit U. Jaki, James B. McAlpine, Shunyan Mo, José G. Napolitano, Jimmy Orjala, Juuso Lehtivarjo, Samuli-Petrus Korhonen, and Matthias Niemitz
Journal of Natural Products, 2014, Volume 77, Number 6, Page 1473
[89]
Włodzimierz Makulski
Magnetic Resonance in Chemistry, 2014, Volume 52, Number 8, Page 430
[90]
Philippe Bertani, Jésus Raya, and Burkhard Bechinger
Solid State Nuclear Magnetic Resonance, 2014, Volume 61-62, Page 15
[92]
Dmitry O. Samultsev, Valentin A. Semenov, and Leonid B. Krivdin
Magnetic Resonance in Chemistry, 2014, Volume 52, Number 5, Page 222
[93]
Gerhard Sohr, Stephanie C. Neumair, Gunter Heymann, Klaus Wurst, Jörn Schmedt auf der Günne, and Hubert Huppertz
Chemistry - A European Journal, 2014, Volume 20, Number 15, Page 4316
[94]
Berislav Perić, Régis Gautier, Chris J. Pickard, Marko Bosiočić, Mihael S. Grbić, and Miroslav Požek
Solid State Nuclear Magnetic Resonance, 2014, Volume 59-60, Page 20
[95]
Paweł Siuda and Joanna Sadlej
Chemical Physics, 2014, Volume 433, Page 31
[96]
Lukáš Kobr, Ke Zhao, Yongqiang Shen, Richard K. Shoemaker, Charles T. Rogers, and Josef Michl
Crystal Growth & Design, 2014, Volume 14, Number 2, Page 559
[97]
Piotr Garbacz, Victor V. Terskikh, Michael J. Ferguson, Guy M. Bernard, Mariusz Kędziorek, and Roderick E. Wasylishen
The Journal of Physical Chemistry A, 2014, Volume 118, Number 7, Page 1203
[99]
Adam Gryff-Keller, Sergey Molchanov, and Artur Wodyński
The Journal of Physical Chemistry A, 2014, Volume 118, Number 1, Page 128
[100]
Joanna S. Stevens, Stephen J. Byard, Colin C. Seaton, Ghazala Sadiq, Roger J. Davey, and Sven L. M. Schroeder
Phys. Chem. Chem. Phys., 2014, Volume 16, Number 3, Page 1150
[101]
Natalia Baumgärtel, Alexandrine Flambard, Frank H. Köhler, and Rodrigue Lescouëzec
Inorganic Chemistry, 2013, Volume 52, Number 21, Page 12634
[102]
Bryan M. Tienes, Russell J. Perkins, Richard K. Shoemaker, and Gordana Dukovic
Chemistry of Materials, 2013, Volume 25, Number 21, Page 4321
[103]
Alexander N. Marziale, Anja Friedrich, Isabel Klopsch, Markus Drees, Vinicius R. Celinski, Jörn Schmedt auf der Günne, and Sven Schneider
Journal of the American Chemical Society, 2013, Volume 135, Number 36, Page 13342
[104]
Véronique Lewin, Julie Rivollier, Sylvie Coudert, David-Alexandre Buisson, Delphine Baumann, Bernard Rousseau, François-Xavier Legrand, Hana Kouřilová, Patrick Berthault, Jean-Pierre Dognon, Marie-Pierre Heck, and Gaspard Huber
European Journal of Organic Chemistry, 2013, Volume 2013, Number 18, Page 3857
[105]
Charoensak Lao-ngam, Mayuree Phonyiem, Sermsiri Chaiwongwattana, Yoshiyuki Kawazoe, and Kritsana Sagarik
Chemical Physics, 2013, Volume 420, Page 50
[107]
Christoph F. Kins, Gunther Brunklaus, and Hans Wolfgang Spiess
Macromolecules, 2013, Volume 46, Number 6, Page 2067
[108]
V.M. Gun’ko, I.Y. Sulym, M.V. Borysenko, and V.V. Turov
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, Volume 426, Page 47
[109]
Evgeniy Papulovskiy, Alexandre A. Shubin, Victor V. Terskikh, Chris J. Pickard, and Olga B. Lapina
Physical Chemistry Chemical Physics, 2013, Volume 15, Number 14, Page 5115
[110]
Éléonore J. Kibrik, Oliver Steinhof, Günter Scherr, Werner R. Thiel, and Hans Hasse
Journal of Polymer Research, 2013, Volume 20, Number 4
[111]
Michael J. Gretton, Brett A. Kamino, and Timothy P. Bender
Macromolecular Symposia, 2013, Volume 324, Number 1, Page 82
[113]
Vladimir M. Gun’ko, Vladimir V. Turov, Raymond L.D. Whitby, Gennadiy P. Prykhod’ko, Alexander V. Turov, and Sergey V. Mikhalovsky
Carbon, 2013, Volume 57, Page 191
[114]
Leslie D. Field, Peter M. Jurd, Alison M. Magill, and Mohan M. Bhadbhade
Organometallics, 2013, Volume 32, Number 2, Page 636
[115]
V.M. Gun’ko, V.V. Turov, T.V. Krupska, A.N. Ruban, A.I. Kazanets, R. Leboda, and J. Skubiszewska-Zięba
Journal of Colloid and Interface Science, 2013, Volume 394, Page 467
[116]
Yu. I. Neronov and N. N. Seregin
Journal of Experimental and Theoretical Physics, 2012, Volume 115, Number 5, Page 777
[117]
Derek J. Langeslay, Consuelo N. Beecher, Annamaria Naggi, Marco Guerrini, Giangiacomo Torri, and Cynthia K. Larive
Analytical Chemistry, 2013, Volume 85, Number 2, Page 1247
[118]
Brett C. Feland, Guy M. Bernard, and Roderick E. Wasylishen
Canadian Journal of Chemistry, 2012, Volume 90, Number 10, Page 891
[120]
Piotr Garbacz, Karol Jackowski, Włodzimierz Makulski, and Roderick E. Wasylishen
The Journal of Physical Chemistry A, 2012, Volume 116, Number 48, Page 11896
[121]
Christian Bonhomme, Christel Gervais, Florence Babonneau, Cristina Coelho, Frédérique Pourpoint, Thierry Azaïs, Sharon E. Ashbrook, John M. Griffin, Jonathan R. Yates, Francesco Mauri, and Chris J. Pickard
Chemical Reviews, 2012, Volume 112, Number 11, Page 5733
[122]
Vinicius Ribeiro Celinski, Johannes Weber, and Jörn Schmedt auf der Günne
Solid State Nuclear Magnetic Resonance, 2013, Volume 49-50, Page 12
[123]
Yamini S. Avadhut, Johannes Weber, Elin Hammarberg, Claus Feldmann, and Jörn Schmedt auf der Günne
Physical Chemistry Chemical Physics, 2012, Volume 14, Number 33, Page 11610
[124]
Olga Serra, Subhasish Chatterjee, Wenlin Huang, and Ruth E. Stark
Plant Science, 2012, Volume 195, Page 120
[125]
Vegar Stockmann, Jan M. Bakke, Per Bruheim, and Anne Fiksdahl
Tetrahedron, 2009, Volume 65, Number 18, Page 3668
[126]
Annette K. Brenner, Bruno Kieffer, Gilles Travé, Nils Åge Frøystein, and Arnt J. Raae
Journal of Biomolecular NMR, 2012, Volume 53, Number 2, Page 71
[127]
Michał Jaszuński, Andrej Antušek, Piotr Garbacz, Karol Jackowski, Włodzimierz Makulski, and Marcin Wilczek
Progress in Nuclear Magnetic Resonance Spectroscopy, 2012, Volume 67, Page 49
[128]
Géza Szigethy, David W. Shaffer, and Alan F. Heyduk
Inorganic Chemistry, 2012, Volume 51, Number 23, Page 12606
[129]
Jonathan M. Lamley and Józef R. Lewandowski
Journal of Magnetic Resonance, 2012, Volume 218, Page 30
[130]
Włodzimierz Makulski
Journal of Molecular Structure, 2012, Volume 1017, Page 45
[131]
Cory M. Widdifield, Titel Jurca, Darrin S. Richeson, and David L. Bryce
Polyhedron, 2012, Volume 35, Number 1, Page 96
[132]
Gang Wu and Jianfeng Zhu
Progress in Nuclear Magnetic Resonance Spectroscopy, 2012, Volume 61, Page 1
[133]
Nicolay I. Dodoff, Maria Lalia-Kantouri, Maria Gdaniec, Agnieszka Czapik, Nikolay G. Vassilev, Leni S. Markova, and Margarita D. Apostolova
Journal of Coordination Chemistry, 2012, Volume 65, Number 4, Page 688
[134]
James B. Gerken
Journal of Fluorine Chemistry, 2011, Volume 132, Number 1, Page 68
[135]
Lan Maria Tran, Bogdan Nowak, and Vinh Hung Tran
Physical Review B, 2011, Volume 84, Number 22
[136]
Olivia R. Allen, Leslie D. Field, Alison M. Magill, Khuong Q. Vuong, Mohan M. Bhadbhade, and Scott J. Dalgarno
Organometallics, 2011, Volume 30, Number 23, Page 6433
[137]
J.W. Faller, Tracey Friss, and Jonathan Parr
Journal of Organometallic Chemistry, 2010, Volume 695, Number 24, Page 2644
[138]
Karol Jackowski, Michał Jaszuński, Bohdan Kamieński, and Marcin Wilczek
Journal of Magnetic Resonance, 2008, Volume 193, Number 1, Page 147
[139]
Robert L. Vold and Gina L. Hoatson
Journal of Magnetic Resonance, 2009, Volume 198, Number 1, Page 57
[140]
John M. Griffin, Andrew J. Berry, and Sharon E. Ashbrook
Solid State Nuclear Magnetic Resonance, 2011, Volume 40, Number 2, Page 91
[141]
Ina Trapp, Matthias Löble, Jens Meyer, and Frank Breher
Inorganica Chimica Acta, 2011, Volume 374, Number 1, Page 373
[142]
Wendy L. Popplewell, Ranjala Ratnayake, Jennifer A. Wilson, John A. Beutler, Nancy H. Colburn, Curtis J. Henrich, James B. McMahon, and Tawnya C. McKee
Journal of Natural Products, 2011, Volume 74, Number 8, Page 1686
[143]
Andreas Brinkmann and Mattias Edén
Canadian Journal of Chemistry, 2011, Volume 89, Number 7, Page 892
[144]
Karol Jackowski and Włodzimierz Makulski
Magnetic Resonance in Chemistry, 2011, Page n/a
[145]
Cory M. Widdifield and David L. Bryce
Canadian Journal of Chemistry, 2011, Volume 89, Number 7, Page 754
[146]
Debbie C. Crans, Samantha Schoeberl, Ernestas Gaidamauskas, Bharat Baruah, and Deborah A. Roess
JBIC Journal of Biological Inorganic Chemistry, 2011, Volume 16, Number 6, Page 961
[147]
Vegar Stockmann, Sebastian Primpke, and Anne Fiksdahl
Journal of Heterocyclic Chemistry, 2011, Volume 48, Number 3, Page 737
[148]
Lishan Yao, Alexander Grishaev, Gabriel Cornilescu, and Ad Bax
Journal of the American Chemical Society, 2010, Volume 132, Number 12, Page 4295
[149]
Saeed K. Amini, Hoora Shaghaghi, Alex D. Bain, Ammar Chabok, and Mohsen Tafazzoli
Solid State Nuclear Magnetic Resonance, 2010, Volume 37, Number 1-2, Page 13
[150]
J. Klingenfus and P. Palmas
Physical Chemistry Chemical Physics, 2011, Volume 13, Number 22, Page 10661
[152]
Rebecca P. Chapman, Cory M. Widdifield, and David L. Bryce
Progress in Nuclear Magnetic Resonance Spectroscopy, 2009, Volume 55, Number 3, Page 215
[153]
Hazime Saitô, Isao Ando, and Ayyalusamy Ramamoorthy
Progress in Nuclear Magnetic Resonance Spectroscopy, 2010, Volume 57, Number 2, Page 181
[154]
Bryan A. Demko and Roderick E. Wasylishen
Progress in Nuclear Magnetic Resonance Spectroscopy, 2009, Volume 54, Number 3-4, Page 208
[155]
Kamal H. Mroué, Abdul-Hamid M. Emwas, and William P. Power
Canadian Journal of Chemistry, 2010, Volume 88, Number 2, Page 111
[156]
Leszek Pazderski, Tomasz Pawlak, Jerzy Sitkowski, Lech Kozerski, and Edward Szlyk
Magnetic Resonance in Chemistry, 2011, Volume 49, Number 5, Page 237
[157]
Zachary M. Hudson, Christina Sun, Kristopher J. Harris, Bryan E. G. Lucier, Robert W. Schurko, and Suning Wang
Inorganic Chemistry, 2011, Volume 50, Number 8, Page 3447
[159]
Gillian Overend, Jonathan A. Iggo, Brian T. Heaton, and Robin Whyman
Magnetic Resonance in Chemistry, 2008, Volume 46, Number S1, Page S100
[160]
[161]
Kentaro Kitagawa, Hirotada Gotou, Takehiko Yagi, Atsushi Yamada, Takehiko Matsumoto, Yoshiya Uwatoko, and Masashi Takigawa
Journal of the Physical Society of Japan, 2010, Volume 79, Number 2, Page 024001
[162]
Thushan Pathmalingam, Fatemah Habib, Cory M. Widdifield, Francis Loiseau, Tara J. Burchell, Serge I. Gorelsky, André M. Beauchemin, David L. Bryce, and Muralee Murugesu
Dalton Trans., 2010, Volume 39, Number 6, Page 1504
[163]
Lindsay S. Cahill, John V. Hanna, Alan Wong, Jair C. C. Freitas, Jonathan R. Yates, Robin K. Harris, and Mark E. Smith
Chemistry - A European Journal, 2009, Volume 15, Number 38, Page 9785
[164]
Rebecca P. Chapman and David L. Bryce
Physical Chemistry Chemical Physics, 2009, Volume 11, Number 32, Page 6987
[165]
David M. Grant and Merrill D. Halling
Concepts in Magnetic Resonance Part A, 2009, Volume 34A, Number 4, Page 217
[166]
R. K. Harris
Magnetic Resonance in Chemistry, 2008, Volume 46, Number 6, Page 507

Comments (0)

Please log in or register to comment.
Log in