Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 80, Issue 10

Issues

The future of solar photovoltaics: A new challenge for chemical physics

Oleg Shevaleevskiy
  • Corresponding author
  • Solar Energy Conversion Laboratory, Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin St. 4, Moscow 119334, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-01-01 | DOI: https://doi.org/10.1351/pac200880102079

In recent times, photovoltaic (PV) technologies for solar energy conversion have gained greater recognition. World production of PV cells and modules over the last five years grew at an average of around 40 % a year. The history of modern PV science started more than half a century ago. However, the period that followed exploited the mid-20th century developments in the basics of solid-state physics and semiconductor science. With only a few exceptions, almost no major achievements were attained during a long period of time. The present paper offers an attempt of a critical retrospective look at the history and current progress of solar PV research from a personal viewpoint. It also addresses the current status of research on conventional solid-state PV devices and compares it with the alternative organic and molecular PV systems. The paper briefly describes the potential of new types of organic and mesoscopic dye-sensitized solar cells (DSCs). The paper shows that chemical physics rather than traditional solid-state physics is expected to lead to exciting challenges in the future of PV science.

Keywords: chemical physics; energy conversion; fullerenes; heterostructures; organic semiconductors; photovoltaics; solar cells

Conference

International Conference and Exhibition "Molecular and Nanoscale Systems for Energy Conversion" (MEC-2007), Moscow, Russia, 2007-10-01–2007-10-03

References

  • 1.

    , D. M. Chapin, C. S. Fuller, G. L. Pearson. J. Appl. Phys. 25, 676 (1954).CrossrefGoogle Scholar

  • 2.

    , Zh. I. Alferov. Rev. Mod. Phys. 73, 767 (2001).CrossrefGoogle Scholar

  • 3.

    Zh. I. Alferov, V. M. Andreev, M. B. Kagan, I. I. Protasov, V. G. Trofim. Sov. Phys. Semicond. 4, 12 (1970).Google Scholar

  • 4.

    , D. L. Staebler, C. R. Wronski. Appl. Phys. Lett. 31, 292 (1977).CrossrefGoogle Scholar

  • 5.

    , A. Luque, A. Marti. Phys. Rev. Lett. 78, 5014 (1997).CrossrefGoogle Scholar

  • 6.

    , A. Luque, A. Marti, E. Antolin, C. Tablero. Physica B 382, 320 (2006).CrossrefGoogle Scholar

  • 7.

    , W. Shan, W. Walukiewicz, J. W. Ager, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz. Phys. Rev. Lett. 8, 1221 (1999).CrossrefGoogle Scholar

  • 8.

    , A. Luque, A. Marti, C. Stanley, N. Lopez, L. Cuadra, D. Zhou, J. L. Pearson, A. McKee. J. Appl. Phys. 96, 903 (2004).CrossrefGoogle Scholar

  • 9.

    , P. Palacios, J. J. Fernandez, K. Sanchez, J. C. Conesa, P. Wahnon. Phys. Rev. B 73, 085206 (2006).CrossrefGoogle Scholar

  • 10.

    , P. Palacios, K. Sanchez, J. C. Conesa, P. Wahnon. Phys. Status Solidi A 203, 1395 (2006).CrossrefGoogle Scholar

  • 11.

    , L. Larina, E. M. Trukhan, O. Shevaleevskiy, B. T. Ahn. J. Electrochem. Soc. 155, H529 (2008).CrossrefGoogle Scholar

  • 12.

    , N. Vlachopoulos, P. Liska, J. Augustynski, M. Gratzel. J. Am. Chem. Soc. 110, 1216 (1988).CrossrefGoogle Scholar

  • 13.

    , B. O'Regan, M. Gratzel. Nature 353, 737 (1991).CrossrefGoogle Scholar

  • 14.

    A. E. Becquerel. C. R. Acad. Sci. 9, 561 (1839).Google Scholar

  • 15.

    , W. G. Adams, R. E. Day. Philos. Trans. R. Soc. 167, 313 (1877).CrossrefGoogle Scholar

  • 16.

    G. M. Minchin. The Photographic News 35, 57 (1891).Google Scholar

  • 17.

    C. E. Fritts. Am. J. Sci. 26, 465 (1883).CrossrefGoogle Scholar

  • 18.

    B. T. Kolomiets. Izv. AN SSSR, Ser. Fiz. 5-6, 695 (1938).Google Scholar

  • 19.

    N. N. Semenov. Nauchnoe Slovo (in Russian) 2-3, 3 (1931).Google Scholar

  • 20.

    N. N. Semenov. Sci. Life (in Russian) 10-11, 16 (1972).Google Scholar

  • 21.

    N. N. Semenov. Chem. Br. 10, 471 (1974).Google Scholar

  • 22.

    , Zh. I. Alferov, V. M. Andreev, V. D. Rumyantsev. Semiconductors 38, 899 (2004).CrossrefGoogle Scholar

  • 23.

    In press release of the Fraunhofer Institute for Solar Energy Systems, Freiburg, Germany (2006); <http://www.ise.fhg.de/press-and-media/press-releases>.Google Scholar

  • 24.

    L. L. Kazmerski. In World Renewable Energy Congress VI (WREC2000), A. A. M. Syaigh (Ed.), p. 2674, Elsevier Science (2000).Google Scholar

  • 25.

    , L. L. Kazmerski. J. Electron Spectrosc. Relat. Phenom. 150, 105 (2006).CrossrefGoogle Scholar

  • 26.

    W. Shockley. Electrons and Holes in Semiconductors, D. van Nostrand, Princeton (1950).Google Scholar

  • 27.

    , G. L. Pearson. Am. J. Phys. 25, 591 (1957).CrossrefGoogle Scholar

  • 28.

    , P. Rappoport. Proc. Natl. Acad. Sci. USA 47, 1303 (1961).CrossrefGoogle Scholar

  • 29.

    , L. L. Kazmerski. Renew. Sustain. Energy Rev. 1, 71 (1997).CrossrefGoogle Scholar

  • 30.

    , O. Chevaleevski, L. Larina. Korean J. Chem. Eng. 18, 403 (2001).CrossrefGoogle Scholar

  • 31.

    , J. F. Geisz, S. Kurtz, M. W. Wanlass, J. S. Ward, A. Dada, D. J. Friedman, J. M. Olson, W. E. McMahon, E. Moriarty, J. T. Kiehl. Appl. Phys. Lett. 91, 023502-01 (2007).CrossrefGoogle Scholar

  • 32.

    , A. S. Gudovskikh, N. A. Kaluzhniy, V. M. Lantratov, S. A. Mintairov, M. Z. Shvarts, V. M. Andreev. Thin Solid Films 20, 6739 (2008).CrossrefGoogle Scholar

  • 33.

    , C. W. Tang. Appl. Phys. Lett. 48, 183 (1986).CrossrefGoogle Scholar

  • 34.

    , S. Siebentritt, S. Gunster, D. Meissner. Synth. Met. 41-43, 1173 (1991).CrossrefGoogle Scholar

  • 35.

    , S. Siebentritt, S. Gunster, D. Meissner. Mol. Cryst. Liq. Cryst. 229, 111 (1993).CrossrefGoogle Scholar

  • 36.

    , J. Rostalski, D. Meissner. Sol. Energy Mater. Sol. Cells 61, 87 (2000).CrossrefGoogle Scholar

  • 37.

    O. I. Shevaleevskiy, V. P. Poponin, L. L. Larina. Mater. Sci. Forum 173-174, 117 (1995).Google Scholar

  • 38.

    , H. Yonehara, C. Pac. Thin Solid Films 278, 108 (1996).CrossrefGoogle Scholar

  • 39.

    , O. I. Shevaleevskiy. Dokl. Phys. Chem. 398, 245 (2004).CrossrefGoogle Scholar

  • 40.

    , O. Shevaleevskiy, L. Larina. J. Electrochem. Soc. 153, A1 (2006).CrossrefGoogle Scholar

  • 41.

    , N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl. Science 258, 1474 (1992).CrossrefGoogle Scholar

  • 42.

    , N. S. Sariciftci, L. Smilowitz, D. Braun, G. Srdanov, V. Srdanov, F. Wudl, A. J. Heeger. Synth. Met. 56, 3125 (1993).CrossrefGoogle Scholar

  • 43.

    , N. S. Sariciftci, D. Braun, C. Zhang, V. Srdanov, A. J. Heeger, G. Stucky, F. Wudl. Appl. Phys. Lett. 62, 585 (1993).CrossrefGoogle Scholar

  • 44.

    , N. S. Sariciftci, A. J. Heeger. Int. J. Mol. Phys. B8, 237 (1994).CrossrefGoogle Scholar

  • 45.

    , N. S. Sariciftci. Prog. Quant. Elec. 19, 131 (1995).CrossrefGoogle Scholar

  • 46.

    , J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Nguyen, M. Dante, A. J. Heeger. Science 317, 222 (2007).CrossrefGoogle Scholar

  • 47.

    , S. Gunes, N. S. Sariciftci. Inorg. Chim. Acta 361, 581 (2008).CrossrefGoogle Scholar

  • 48.

    , A. J. Mozer, N. S. Sariciftci. C. R. Chim. 9, 568 (2006).CrossrefGoogle Scholar

  • 49.

    , H. Gerischer. J. Electroanal. Chem. 82, 133 (1977).CrossrefGoogle Scholar

  • 50.

    H. Tributch. Sol. Energy Mater. 322, 972 (1977).Google Scholar

  • 51.

    R. Memming. "Photoelectrochemical solar energy conversion" in Topics in Current Chemistry, Vol. 143, E. Steckhan (Ed.), pp. 79-112, Springer, Berlin (1988).Google Scholar

  • 52.

    G. G. Komissarov, N. I. Kobozev, L. I. Nekrasov. Zh. Fiz. Khim. 37, 2555 (1963).Google Scholar

  • 53.

    M. I. Federov, V. A. Benderskii. Sov. Phys.-Semicond. 4, 1720 (1971).Google Scholar

  • 54.

    , M. Gratzel. Prog. Photovolt. Res. Appl. 14, 429 (2006).CrossrefGoogle Scholar

  • 55.

    , M. Gratzel. Pure. Appl. Chem. 73, 459 (2001).CrossrefGoogle Scholar

  • 56.

    , J. He, A. Hagfeldt, S.-E. Lindquist. Langmuir 17, 2743 (2001).CrossrefGoogle Scholar

  • 57.

    O. Chevaleevski, L. Larina, K. S. Lim. In Proceedings of Third World Conference on Photovoltaic Energy Conversion, p. 23, IEEE, New Jersey (2003).Google Scholar

  • 58.

    , J. He, H. Lindstrom, A. Hagfeldt, S.-E. Lindquist. Sol. Energy Mater. Sol. Cells 62, 265 (2000).CrossrefGoogle Scholar

  • 59.

    , M. Durr, A. Bamedi, A. Yasuda, G. Nelles. Appl. Phys. Lett. 84, 3397 (2004).CrossrefGoogle Scholar

  • 60.

    , P. Liska, K. R. Thampi, M. Gratzel, D. Bremaud, D. Rudmann, H. M. Ipadhyaya, A. N. Tiwari. Appl. Phys. Lett. 88, 203103 (2006).CrossrefGoogle Scholar

About the article

Published Online: 2009-01-01

Published in Print: 2008-01-01


Citation Information: Pure and Applied Chemistry, Volume 80, Issue 10, Pages 2079–2089, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/pac200880102079.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sadia Khalid, Ejaz Ahmed, Yaqoob Khan, Khalid Nadeem Riaz, and Mohammad Azad Malik
ChemistrySelect, 2018, Volume 3, Number 23, Page 6488
[3]
A. B. Nikolskaia, M. F. Vildanova, S. S. Kozlov, and O. I. Shevaleevskiy
Semiconductors, 2018, Volume 52, Number 1, Page 88
[4]
Sergey Kozlov, Anna Nikolskaia, Liudmila Larina, Marina Vildanova, Alexei Vishnev, and Oleg Shevaleevskiy
physica status solidi (a), 2016, Volume 213, Number 7, Page 1801
[5]
M F Vildanova, A B Nikolskaia, S S Kozlov, and O I Shevaleevskiy
Journal of Physics: Conference Series, 2015, Volume 643, Page 012106
[6]
Mabrouk Zemzemi and Sahbi Alaya
Materials Sciences and Applications, 2015, Volume 06, Number 07, Page 661
[7]
P. Dhamodharan, C. Manoharan, S. Dhanapandian, M. Bououdina, and S. Ramalingam
Journal of Materials Science: Materials in Electronics, 2015, Volume 26, Number 7, Page 4830
[8]
Ajay Jha, Vineeth B. Yasarapudi, Hadiya Jasbeer, Catherine Kanimozhi, Satish Patil, and Jyotishman Dasgupta
The Journal of Physical Chemistry C, 2014, Volume 118, Number 51, Page 29650
[9]
M. Zemzemi, S. Alaya, and Z. Ben Ayadi
Journal of Experimental and Theoretical Physics, 2014, Volume 118, Number 6, Page 945
[10]
Varun Kumar Singh, Ravi Kumar Kanaparthi, and Lingamallu Giribabu
RSC Advances, 2014, Volume 4, Number 14, Page 6970
[11]
M. Zemzemi and S. Alaya
Superlattices and Microstructures, 2013, Volume 64, Page 311
[12]
George M. Hidy, Judith C. Chow, Glen C. England, Alan H. Legge, Alan C. Lloyd, and John G. Watson
Journal of the Air & Waste Management Association, 2012, Volume 62, Number 11, Page 1233
[13]
Nilofar Asim, Kamaruzzaman Sopian, Shideh Ahmadi, Kasra Saeedfar, M.A. Alghoul, Omidreza Saadatian, and Saleem H. Zaidi
Renewable and Sustainable Energy Reviews, 2012, Volume 16, Number 8, Page 5834
[14]
Nikolay A. Tsvetkov, Liudmila L. Larina, Oleg Shevaleevskiy, Essam A. Al-Ammar, and Byung Tae Ahn
Progress in Photovoltaics: Research and Applications, 2012, Volume 20, Number 7, Page 904
[15]
Nikolay Tsvetkov, Liudmila Larina, Oleg Shevaleevskiy, and Byung Tae Ahn
Journal of The Electrochemical Society, 2011, Volume 158, Number 11, Page B1281
[16]
Avi Shalav
Progress in Photovoltaics: Research and Applications, 2009, Volume 17, Number 2, Page 151

Comments (0)

Please log in or register to comment.
Log in