Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2016: 2.626
5-year IMPACT FACTOR: 3.210

CiteScore 2016: 2.45

SCImago Journal Rank (SJR) 2016: 0.972
Source Normalized Impact per Paper (SNIP) 2016: 1.049

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 80, Issue 3 (Jan 2008)

Issues

Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures

Michael M. Haley
  • Corresponding author
  • Department of Chemistry and the Materials Science Institute, University of Oregon, Eugene, OR 97403-1253, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-01-01 | DOI: https://doi.org/10.1351/pac200880030519

This report describes the synthetic strategies toward and optoelectronic properties of substructures of the non-natural, planar carbon networks graphyne and graphdiyne, which are based on the dehydrobenzo[12]annulene and dehydrobenzo[18]annulene framework, respectively.

Keywords: alkynes; allotropes; carbon-rich; macrocycles; optoelectronic materials

Conference

International Symposium on Novel Aromatic Compounds (ISNA-12), International Symposium on Novel Aromatic Compounds, ISNA, Novel Aromatic Compounds, 12th, Awaji Island, Japan, 2007-07-22–2007-07-27

References

  • 1. (a)

    R. E. Kirk, D. F. Othmer, M. Grayson, D. Eckroth. Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. 1978-1984, Vol. 4, p. 556, John Wiley, New York (1978);Google Scholar

  • 1. (b)

    B. T. Kelly. Physics of Graphite, Applied Science Publishers, New Jersey (1981);Google Scholar

  • 1. (c)

    J. E. Fields (Ed.). The Properties of Diamond, Academic Press, London (1979).Google Scholar

  • 2. (a)

    E. Fitzer (Ed.). Carbon Fibers and Their Composites, Springer, Berlin (1985);Google Scholar

  • 2. (b)

    M. C. Reisch. Chem. Eng. News 65, 9 (1987);Google Scholar

  • 2. (c)

    A. M. Thayer. Chem. Eng. News 68, 37 (1990);CrossrefGoogle Scholar

  • 2. (d)

    Carbon Vol. 27, Issue 5 (1989);Google Scholar

  • 2. (e)

    J. B. Donnet, R. C. Bosnsal. Carbon Fibers, Marcel Dekker, New York (1984);Google Scholar

  • 2. (f)

    J. Delmonte. Technology of Carbon and Graphite Fiber Composites, Van Nostrand-Reinhold, Princeton (1981);Google Scholar

  • 2. (g)

    G. M. Jenkins, K. Kawamura. Polymeric Carbons: Carbon Fibre, Glass and Char, University Press, Cambridge (1976).Google Scholar

  • 3. (a)

    , P. K. Bachman, R. Messier. Chem. Eng. News 67, 24 (1989);CrossrefGoogle Scholar

  • 3. (b)

    M. Simpson. New Sci. 117, 50 (1988).Google Scholar

  • 4.

    A. T. Balaban, C. C. Rentia, E. Ciupitu. Rev. Roum. Chim. 13, 231 (1968).Google Scholar

  • 5. (a)

    , R. Hoffmann, T. Hughbanks, M. Kertesz, P. H. Bird. J. Am. Chem. Soc. 105, 4831 (1983);CrossrefGoogle Scholar

  • 5. (b)

    , R. L. Johnston, R. Hoffmann. J. Am. Chem. Soc. 111, 810 (1989);CrossrefGoogle Scholar

  • 5. (c)

    , A. T. Balaban. Comput. Math. Appl. 17, 397 (1989);CrossrefGoogle Scholar

  • 5. (d)

    , R. H. Baughman, D. S. Galvao. Nature 365, 735 (1993);CrossrefGoogle Scholar

  • 5. (e)

    , S. A. Best, P. A. Bianconi, K. M. Merz Jr. J. Am. Chem. Soc. 117, 9251 (1995);CrossrefGoogle Scholar

  • 5. (f)

    D. J. Klein, H. Zhu. In From Chemical Topology to Three-Dimensional Geometry, A. T. Balaban (Ed.), p. 297, Plenum Press, New York (1997);Google Scholar

  • 5. (g)

    A. T. Balaban. In Theoretical Organic Chemistry, C.Parkanyi (Ed.), Elsevier, Amsterdam (1998).Google Scholar

  • 6.

    , W. Kratschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman. Nature 347, 354 (1990).CrossrefGoogle Scholar

  • 7.

    , H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley. Nature 318, 162 (1985).CrossrefGoogle Scholar

  • 8.

    , J. M. Hawkins. Acc. Chem. Res. 25, 150 (1992).CrossrefGoogle Scholar

  • 9. (a)

    , A. C. Grimsdale, K. Mullen. Angew. Chem., Int. Ed. 44, 5592 (2005);CrossrefGoogle Scholar

  • 9. (b)

    , U. H. F. Bunz, Y. Rubin, Y. Tobe. Chem. Soc. Rev. 28, 107 (1999);CrossrefGoogle Scholar

  • 9. (c)

    Y. Rubin. Chem.Eur. J. 3, 1009 (1997); (c) U. H. F. Bunz. Synlett 1117 (1997);CrossrefGoogle Scholar

  • 9. (d)

    , F. Diederich. Nature 369, 199 (1994).CrossrefGoogle Scholar

  • 10.

    , R. H. Baughman, H. Eckhardt, M. J. Kertesz. J. Chem. Phys. 87, 6687 (1987).CrossrefGoogle Scholar

  • 11. (a)

    , N. Narita, S. Nagai, S. Suzuki, K. Nakao. Phys. Rev. B 58, 11009 (1998);CrossrefGoogle Scholar

  • 11. (b)

    , N.Narita, S. Nagai, S. Suzuki, K. Nakao. Phys. Rev. B 62, 11146 (2000);CrossrefGoogle Scholar

  • 11. (c)

    , N. Narita, S. Nagai, S. Suzuki. Phys. Rev. B 64, 245408 (2001);CrossrefGoogle Scholar

  • 11. (d)

    , Y. Zhou, S. Feng. Solid State Commun. 122, 307 (2002);CrossrefGoogle Scholar

  • 11. (e)

    , K. Tahara, T. Yoshimura, M. Sonoda, Y. Tobe, R. V. Williams. J. Org. Chem. 72, 1437 (2007).CrossrefGoogle Scholar

  • 12. (a)

    , H.-D. Beckhaus, C. Ruckhardt, M. Kao, F. Diederich, C. S. Foote. Angew. Chem., Int. Ed. Engl. 31, 63 (1992);CrossrefGoogle Scholar

  • 12. (b)

    , H.-D. Beckhaus, S. Verevkin, C. Ruckhardt, F. Diederich, C. Thilgen, H.U. ter Meer, H. Mohn, W. Muller. Angew. Chem., Int. Ed. Engl. 33, 996 (1994).CrossrefGoogle Scholar

  • 13.

    , Y. Tobe, H. Matsumoto, K. Naemura, Y. Achiba, T. Wakabayashi. Angew. Chem., Int. Ed. Engl. 35, 1800 (1996).CrossrefGoogle Scholar

  • 14.

    , R. Diercks, J. Armstrong, R. Boese, K. P. C. Vollhardt. Angew. Chem., Int. Ed. Engl. 25, 268 (1986).CrossrefGoogle Scholar

  • 15. (a)

    , K. Praefcke, B. Kohne, D. Singer. Angew. Chem., Int. Ed. Engl. 29, 177 (1990);CrossrefGoogle Scholar

  • 15. (b)

    , K. Kondo, S. Yasuda, T. Sakaguchi, M. Miya. J. Chem. Soc., Chem. Commun. 55 (1995).CrossrefGoogle Scholar

  • 16.

    , J. E. Anthony, S. I. Khan, Y. Rubin. Tetrahedron Lett. 38, 3499 (1997).CrossrefGoogle Scholar

  • 17. (a)

    , Y. Tobe, K. Kubota, K. Naemura. J. Org. Chem. 62, 3430 (1997);CrossrefGoogle Scholar

  • 17. (b)

    , J. D. Tovar, N. Jux, T.Jarrosson, S. I. Khan, Y. Rubin. J. Org. Chem. 62, 3432 (1997).CrossrefGoogle Scholar

  • 18.

    , J. A. Marsden, G. J. Palmer, M. M. Haley. Eur. J. Org. Chem. 2355 (2003).CrossrefGoogle Scholar

  • 19. (a)

    C. S. Jones, M. J. O'Connor, M. M. Haley. In Acetylene Chemistry: Chemistry, Biology, and Materials Science, F. Diederich, P. J. Stang, R. R. Tykwinski (Eds.), p. 303, Wiley-VCH, Weinheim (2005);Google Scholar

  • 19. (b)

    , E. L. Spitler, C. A. Johnson II, M. M. Haley. Chem. Rev. 106, 5344 (2006).CrossrefGoogle Scholar

  • 20. (a)

    I. D. Campbell, G. Eglinton, W. Henderson, R. A. Raphael. J. Chem. Soc., Chem. Commun. 87 (1966);Google Scholar

  • 20. (b)

    , H. A. Staab, F. Graf. Tetrahedron Lett. 751 (1966).CrossrefGoogle Scholar

  • 21.

    , D. Solooki, J. D. Ferrara, D. Malaba, J. D. Bradshaw, C. A. Tessier, W. J. Youngs. Inorg. Synth. 31, 122 (1997).CrossrefGoogle Scholar

  • 22.

    , J. M. Kehoe, J. H. Kiley, J. J. English, C. A. Johnson, R. C. Petersen, M. M. Haley. Org. Lett. 2, 969 (2000).CrossrefGoogle Scholar

  • 23. (a)

    O. S. Miljanic, K. P. C. Vollhardt, G. D. Whitener. Synlett 29 (2003);Google Scholar

  • 23. (b)

    , M. Iyoda, S.Sirinintasak, Y. Nishiyama, A. Vorasingha, F. Sultana, K. Nakao, Y. Kuwatani, H. Matsuyama, M. Yoshida, Y. Miyake. Synthesis 1527 (2004).CrossrefGoogle Scholar

  • 24. (a)

    , R. R. Schrock. Polyhedron 14, 3177 (1995);CrossrefGoogle Scholar

  • 24. (b)

    , W. Zhang, J. S. Moore. Adv. Synth. Catal. 349, 93 (2007).CrossrefGoogle Scholar

  • 25.

    , C. A. Johnson II, Y. Lu, M. M. Haley. Org. Lett. 9, 3725 (2007).CrossrefGoogle Scholar

  • 26.

    , M. Sonoda, Y. Sakai, T. Yoshimura, Y. Tobe, K. Kamada. Chem. Lett. 33, 972 (2004).CrossrefGoogle Scholar

  • 27.

    , T. Yoshimura, A. Inaba, M. Sonoda, K. Tahara, Y. Tobe, R. V. Williams. Org. Lett. 8, 2933 (2006).CrossrefGoogle Scholar

  • 28.

    , K. Tahara, S. Furukawa, H. Uji-i, T. Uchino, T. Ichikawa, J. Zhang, M. Sonoda, F. C. De Schryver, S. De Feyer, Y. Tobe. J. Am. Chem. Soc. 128, 16613 (2006).CrossrefGoogle Scholar

  • 29. (a)

    F. Diederich, L. Gobbi. Top. Curr. Chem. 201, 43 (1999);Google Scholar

  • 29. (b)

    Y. Tobe. In Advances in Strained and Interesting Organic Molecules, B. Halton (Ed.), Vol. 7, p. 153, JAI Press, Greenwich, CT (2000).Google Scholar

  • 30.

    , R. Boese, J. R. Green, J. Mittendorf, D. L. Mohler, K. P. C. Vollhardt. Angew Chem., Int. Ed. Engl. 31 1643 (1992).CrossrefGoogle Scholar

  • 31.

    , W. B. Wan, M. M. Haley. J. Org. Chem. 66, 3893 (2001).CrossrefGoogle Scholar

  • 32. (a)

    G. Eglinton, A. R. Galbraith. Proc. Chem. Soc. 350 (1957);Google Scholar

  • 32. (b)

    O. M. Behr, G. Eglinton, R.A. Raphael. Chem. Ind. 699 (1959);Google Scholar

  • 32. (c)

    G. Eglinton, A. R. Galbraith. J. Chem. Soc. 3614 (1960).Google Scholar

  • 33.

    , Q. Zhou, P. J. Carroll, T. M. Swager. J. Org. Chem. 59, 1294 (1994).CrossrefGoogle Scholar

  • 34.

    , W. B. Wan, S. C. Brand, J. J. Pak, M. M. Haley. Chem.Eur. J. 6, 2044 (2000).CrossrefGoogle Scholar

  • 35.

    , M. M. Haley, M. L. Bell, J. J. English, C. A. Johnson, T. J. R. Weakley. J. Am. Chem. Soc. 119, 2956 (1997),CrossrefGoogle Scholar

  • 36.

    , M. M. Haley, S. C. Brand, J. J. Pak. Angew. Chem., Int. Ed. Engl. 36, 835 (1997).CrossrefGoogle Scholar

  • 37.

    , J. J. Pak, T. J. R. Weakley, M. M. Haley. J. Am. Chem. Soc. 121, 8182 (1999).CrossrefGoogle Scholar

  • 38.

    , J. A. Marsden, M. M. Haley. J. Org. Chem. 70, 10213 (2005).CrossrefGoogle Scholar

  • 39.

    , P. Siemsen, R. C. Livingston, F. Diederich. Angew. Chem., Int. Ed. 39, 2632 (2000).CrossrefGoogle Scholar

  • 40.

    , J. A. Marsden, J. J. Miller, M. M. Haley. Angew. Chem., Int. Ed. 43, 1694 (2004).CrossrefGoogle Scholar

  • 41.

    , S. Anand, O. Varnavski, J. A. Marsden, M. M. Haley, H. B. Schlegel, T. Goodson III. J. Phys. Chem. A 110, 1305 (2006).CrossrefGoogle Scholar

  • 42. (a)

    , M. Albota, D. Beljonne, J.-L. Bredas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M.Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, C. Xu. Science 281, 1653 (1998);CrossrefGoogle Scholar

  • 42. (b)

    , T.Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J.-L. Bredas. Chem. Phys. Lett. 298, 1 (1998);CrossrefGoogle Scholar

  • 42. (c)

    , D. Beljonne, W. Wenseleers, E. Zoger, Z. Shuai, H. Vogel, S. J. K. Pond, J. W. Perry, S. R. Marder, J.-L. Bredas. Adv. Funct. Mater. 12, 631 (2002);CrossrefGoogle Scholar

  • 42. (d)

    T. Lin, S. Chung, K. Kim, X.Wang, G. S. He, J. Swiatkiewicz, H. E. Pudavar, P. N. Prasad. Adv. Polym Sci. 161, 157 (2003);Google Scholar

  • 42. (e)

    , Y. Wang, G. S. He, P. N. Prasad, T. Goodson III. J. Am. Chem. Soc. 127, 10128 (2005);CrossrefGoogle Scholar

  • 42. (f)

    , T.Goodson III. Acc. Chem. Res. 38, 99 (2005).CrossrefGoogle Scholar

  • 43.

    , A. Bhaskar, R. Guda, M. M. Haley, T. Goodson III. J. Am. Chem. Soc. 128, 13972 (2006).CrossrefGoogle Scholar

About the article

Published Online: 2009-01-01

Published in Print: 2008-01-01


Citation Information: Pure and Applied Chemistry, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/pac200880030519.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Naga Venkateswara Rao Nulakani and Venkatesan Subramanian
ACS Omega, 2017, Volume 2, Number 10, Page 6822
[3]
[4]
Zhiyu Jia, Yongjun Li, Zicheng Zuo, Huibiao Liu, Changshui Huang, and Yuliang Li
Accounts of Chemical Research, 2017
[5]
Paul N. W. Baxter, Lydia Karmazin, André DeCian, Alexandre Varnek, Jean-Paul Gisselbrecht, Jean-Marc Strub, and Sarah Cianferani
European Journal of Organic Chemistry, 2017, Volume 2017, Number 31, Page 4625
[6]
Suresh Kanikarapu, Kanakaraju Marumudi, Ajit C. Kunwar, Jhillu S. Yadav, and Debendra K. Mohapatra
Organic Letters, 2017, Volume 19, Number 16, Page 4167
[7]
Zhi Chen, Concepción Molina-Jirón, Svetlana Klyatskaya, Florian Klappenberger, and Mario Ruben
Annalen der Physik, 2017, Page 1700056
[8]
Yongping Zheng, Yanhuan Chen, Lihua Lin, Yuanyuan Sun, Huibiao Liu, Yuliang Li, Youwei Du, and Nujiang Tang
Applied Physics Letters, 2017, Volume 111, Number 3, Page 033101
[9]
S. Golafrooz Shahri, M.R. Roknabadi, and R. Radfar
Journal of Magnetism and Magnetic Materials, 2017, Volume 443, Page 96
[10]
Niloofar Ketabi, Thomas M. Tolhurst, Brett Leedahl, Huibiao Liu, Yuliang Li, and Alexander Moewes
Carbon, 2017, Volume 123, Page 1
[11]
Suman Chowdhury, Arnab Majumdar, and Debnarayan Jana
Journal of Magnetism and Magnetic Materials, 2017, Volume 441, Page 523
[12]
Yurui Xue, Zicheng Zuo, Yongjun Li, Huibiao Liu, and Yuliang Li
Small, 2017, Volume 13, Number 31, Page 1700936
[13]
Sergio A. Hernandez and Alexandre F. Fonseca
Diamond and Related Materials, 2017, Volume 77, Page 57
[14]
Zhiyu Jia, Yongjun Li, Zicheng Zuo, Huibiao Liu, Dan Li, and Yuliang Li
Advanced Electronic Materials, 2017, Page 1700133
[16]
Xiao Yan, Zihua Xin, Junxian Liu, Guohong Yang, Lijun Tian, and M. Yu
Computational Materials Science, 2017, Volume 135, Page 9
[17]
Filipe C. Rodrigues, Nuno Silvestre, and Augusto M. Deus
Computational Materials Science, 2017, Volume 134, Page 171
[18]
Mei Feng, David R. Bell, Judong Luo, and Ruhong Zhou
Phys. Chem. Chem. Phys., 2017, Volume 19, Number 15, Page 10187
[19]
Saleh Bagheri, Abolghasem Shameli, Mehdi Darvishi, and Ghasem Fakhrpour
Physica E: Low-dimensional Systems and Nanostructures, 2017, Volume 90, Page 123
[20]
Zhenzhu Li, Zhongfan Liu, and Zhirong Liu
Nano Research, 2017, Volume 10, Number 6, Page 2005
[21]
Chongwei Zhu, Carine Duhayon, Alix Saquet, Valérie Maraval, and Remi Chauvin
Canadian Journal of Chemistry, 2017, Volume 95, Number 4, Page 454
[23]
Lianming Zhao, Pengpeng Sang, Sheng Guo, Xiuping Liu, Jing Li, Houyu Zhu, and Wenyue Guo
Applied Surface Science, 2017, Volume 405, Page 455
[24]
Diego Cortés-Arriagada
International Journal of Quantum Chemistry, 2017, Volume 117, Number 7, Page e25346
[25]
Zhiyu Jia, Zicheng Zuo, Yuanping Yi, Huibiao Liu, Dan Li, Yongjun Li, and Yuliang Li
Nano Energy, 2017, Volume 33, Page 343
[26]
[28]
Pengpeng Sang, Lianming Zhao, Jing Xu, Zemin Shi, Sheng Guo, Yanchen Yu, Houyu Zhu, Zifeng Yan, and Wenyue Guo
International Journal of Hydrogen Energy, 2017, Volume 42, Number 8, Page 5168
[29]
Yanling Tian, Zheng Li, and Kunhai Cai
Nanomaterials and Nanotechnology, 2015, Volume 5, Page 9
[30]
Shengliang Zhang, Jianjiang He, Jie Zheng, Changshui Huang, Qing Lv, Kun Wang, Ning Wang, and Zhenggang Lan
J. Mater. Chem. A, 2017, Volume 5, Number 5, Page 2045
[31]
Chongwei Zhu, Arnaud Rives, Carine Duhayon, Valérie Maraval, and Remi Chauvin
The Journal of Organic Chemistry, 2017, Volume 82, Number 2, Page 925
[32]
Takashi Takeda and Michael M. Haley
Canadian Journal of Chemistry, 2017, Volume 95, Number 3, Page 298
[33]
Barnali Bhattacharya, Utpal Sarkar, and Nicola Seriani
The Journal of Physical Chemistry C, 2016, Volume 120, Number 47, Page 26579
[34]
Barnali Bhattacharya and Utpal Sarkar
The Journal of Physical Chemistry C, 2016, Volume 120, Number 47, Page 26793
[35]
Yurui Xue, Jiaofu Li, Zheng Xue, Yongjun Li, Huibiao Liu, Dan Li, Wensheng Yang, and Yuliang Li
ACS Applied Materials & Interfaces, 2016, Volume 8, Number 45, Page 31083
[36]
Kévin Cocq, Nathalie Saffon-Merceron, Yannick Coppel, Corentin Poidevin, Valérie Maraval, and Remi Chauvin
Angewandte Chemie International Edition, 2016, Volume 55, Number 48, Page 15133
[37]
Kévin Cocq, Nathalie Saffon-Merceron, Yannick Coppel, Corentin Poidevin, Valérie Maraval, and Remi Chauvin
Angewandte Chemie, 2016, Volume 128, Number 48, Page 15357
[38]
L. A. Openov and A. I. Podlivaev
JETP Letters, 2016, Volume 104, Number 3, Page 193
[39]
Somayeh Behzad
Solid State Communications, 2016, Volume 248, Page 27
[40]
Yurui Xue, Yuan Guo, Yuanping Yi, Yongjun Li, Huibiao Liu, Dan Li, Wensheng Yang, and Yuliang Li
Nano Energy, 2016, Volume 30, Page 858
[41]
Hongyu Zhang, Hongzhe Pan, Meng Zhang, and Youhua Luo
Phys. Chem. Chem. Phys., 2016, Volume 18, Number 34, Page 23954
[42]
L. A. Openov and A. I. Podlivaev
Physics of the Solid State, 2016, Volume 58, Number 8, Page 1705
[43]
Jonathan W. Crowe, Luke A. Baldwin, and Psaras L. McGrier
Journal of the American Chemical Society, 2016, Volume 138, Number 32, Page 10120
[44]
Juan Gao, Jiaofu Li, Zheng Xue, Huibiao Liu, Yongjun Li, and Yuliang Li
Chemistry - An Asian Journal, 2016, Volume 11, Number 19, Page 2778
[45]
Zhiwen Jin, Mingjian Yuan, Hui Li, Hui Yang, Qing Zhou, Huibiao Liu, Xinzheng Lan, Mengxia Liu, Jizheng Wang, Edward H. Sargent, and Yuliang Li
Advanced Functional Materials, 2016, Volume 26, Number 29, Page 5284
[46]
A. I. Podlivaev and L. A. Openov
JETP Letters, 2016, Volume 103, Number 3, Page 185
[47]
Barnali Bhattacharya and Utpal Sarkar
Chemical Physics, 2016, Volume 478, Page 73
[48]
Shuqing Zhang, Jinying Wang, Zhenzhu Li, Ruiqi Zhao, Lianming Tong, Zhongfan Liu, Jin Zhang, and Zhirong Liu
The Journal of Physical Chemistry C, 2016, Volume 120, Number 19, Page 10605
[49]
Xiaoming Zhang, Lin Wei, Jie Tan, and Mingwen Zhao
Carbon, 2016, Volume 105, Page 323
[50]
Shengliang Zhang, Huiping Du, Jianjiang He, Changshui Huang, Huibiao Liu, Guanglei Cui, and Yuliang Li
ACS Applied Materials & Interfaces, 2016, Volume 8, Number 13, Page 8467
[52]
Masoumeh Ozmaian, Arman Fathizadeh, Morteza Jalalvand, Mohammad Reza Ejtehadi, and S. Mehdi Vaez Allaei
Scientific Reports, 2016, Volume 6, Number 1
[53]
C. S. Casari, M. Tommasini, R. R. Tykwinski, and A. Milani
Nanoscale, 2016, Volume 8, Number 8, Page 4414
[54]
Afshan Mohajeri and Azin Shahsavar
Computational Materials Science, 2016, Volume 115, Page 51
[55]
Cheol-Woon Kim, Seoung-Hun Kang, and Young-Kyun Kwon
Physical Review B, 2015, Volume 92, Number 24
[56]
Dieter B Brommer, Tristan Giesa, David I Spivak, and Markus J Buehler
Nanotechnology, 2016, Volume 27, Number 2, Page 024002
[57]
Hongcai Zhou, Shuangwen Lu, Feng Li, and Yuanyuan Qu
Physica E: Low-dimensional Systems and Nanostructures, 2016, Volume 78, Page 19
[58]
Karthikeyan Krishnamoorthy, Sakthivel Thangavel, Jipsa Chelora Veetil, Nandhakumar Raju, Gunasekaran Venugopal, and Sang Jae Kim
International Journal of Hydrogen Energy, 2016, Volume 41, Number 3, Page 1672
[59]
Jinbo Pan, Shixuan Du, Yuyang Zhang, Lida Pan, Yanfang Zhang, Hong-Jun Gao, and Sokrates T. Pantelides
Physical Review B, 2015, Volume 92, Number 20
[60]
Jian Wang, Ai-Juan Zhang, and Yuansheng Tang
Journal of Applied Physics, 2015, Volume 118, Number 19, Page 195102
[61]
Hahn Kim, Yeonjoon Kim, Jaewook Kim, and Woo Youn Kim
Carbon, 2016, Volume 98, Page 404
[62]
Maude Desroches, Marc-André Courtemanche, Geneviève Rioux, and Jean-François Morin
The Journal of Organic Chemistry, 2015, Volume 80, Number 21, Page 10634
[63]
Dage Sundholm, Lukas N. Wirz, and Peter Schwerdtfeger
Nanoscale, 2015, Volume 7, Number 38, Page 15886
[64]
Arka Bandyopadhyay, Parthasarathi Pal, Suman Chowdhury, and Debnarayan Jana
Materials Research Express, 2015, Volume 2, Number 9, Page 095603
[65]
Akbar Omidvar and Afshan Mohajeri
Molecular Physics, 2015, Volume 113, Number 23, Page 3900
[66]
D.W. Ma, Tingxian Li, Qinggao Wang, Gui Yang, Chaozheng He, Benyuan Ma, and Zhansheng Lu
Carbon, 2015, Volume 95, Page 756
[67]
A. Montazeri, S. Ebrahimi, A. Rajabpour, and H. Rafii-Tabar
Nano, 2015, Volume 10, Number 07, Page 1550105
[68]
Michael M. Haley
The Chemical Record, 2015, Volume 15, Number 6, Page 1140
[69]
Yu Zhang, Jason Lee, Wei-Liang Wang, and Dao-Xin Yao
Computational Materials Science, 2015, Volume 110, Page 109
[70]
Yang Pei, Haibin Wu, and Jingmin Liu
Journal of Semiconductors, 2015, Volume 36, Number 7, Page 072002
[71]
B. Bhattacharya, N. B. Singh, R. Mondal, and U. Sarkar
Phys. Chem. Chem. Phys., 2015, Volume 17, Number 29, Page 19325
[72]
Zhi-Gang Shao and Zhen-Long Sun
Physica E: Low-dimensional Systems and Nanostructures, 2015, Volume 74, Page 438
[73]
Jeonghwan Ahn, Sungjin Park, Hoonkyung Lee, and Yongkyung Kwon
Physical Review B, 2015, Volume 92, Number 3
[74]
E. A. Belenkov, V. V. Mavrinskii, T. E. Belenkova, and V. M. Chernov
Journal of Experimental and Theoretical Physics, 2015, Volume 120, Number 5, Page 820
[75]
E. A. Belenkov and V. A. Greshnyakov
Physics of the Solid State, 2015, Volume 57, Number 6, Page 1253
[76]
Vasilios Georgakilas, Jason A. Perman, Jiri Tucek, and Radek Zboril
Chemical Reviews, 2015, Volume 115, Number 11, Page 4744
[77]
Adam Mrozek, Wacław Kuś, and Tadeusz Burczyński
Computational Materials Science, 2015, Volume 106, Page 161
[78]
Xiao Yan, Zihua Xin, Lijun Tian, and M. Yu
Computational Materials Science, 2015, Volume 107, Page 8
[79]
Hetong Qi, Ping Yu, Yuexiang Wang, Guangchao Han, Huibiao Liu, Yuanping Yi, Yuliang Li, and Lanqun Mao
Journal of the American Chemical Society, 2015, Volume 137, Number 16, Page 5260
[80]
Ming Hu, Yuhang Jing, and Xiaoliang Zhang
Physical Review B, 2015, Volume 91, Number 15
[81]
Barnali Bhattacharya, Ngangbam Bedamani Singh, and Utpal Sarkar
International Journal of Quantum Chemistry, 2015, Volume 115, Number 13, Page 820
[82]
Philippe Dollfus, Viet Hung Nguyen, and Jérôme Saint-Martin
Journal of Physics: Condensed Matter, 2015, Volume 27, Number 13, Page 133204
[83]
P. Lazić and Ž. Crljen
Physical Review B, 2015, Volume 91, Number 12
[84]
Yuhang Jing, Ming Hu, Yufei Gao, Licheng Guo, and Yi Sun
International Journal of Heat and Mass Transfer, 2015, Volume 85, Page 880
[86]
Shengliang Zhang, Huibiao Liu, Changshui Huang, Guanglei Cui, and Yuliang Li
Chem. Commun., 2015, Volume 51, Number 10, Page 1834
[87]
Xuemin Qian, Huibiao Liu, Changshui Huang, Songhua Chen, Liang Zhang, Yongjun Li, Jizheng Wang, and Yuliang Li
Scientific Reports, 2015, Volume 5, Number 1
[88]
Saeed Rouhi, Ali Ghasemi, and Kaveh Salmalian
Brazilian Journal of Physics, 2015, Volume 45, Number 2, Page 206
[89]
Eric Perim, Leonardo Dantas Machado, and Douglas Soares Galvao
Frontiers in Materials, 2014, Volume 1
[90]
Hâldun Sevinçli and Cem Sevik
Applied Physics Letters, 2014, Volume 105, Number 22, Page 223108
[91]
John Landers, Frédéric Chérioux, Maurizio De Santis, Nedjma Bendiab, Simon Lamare, Laurence Magaud, and Johann Coraux
2D Materials, 2014, Volume 1, Number 3, Page 034005
[92]
Robert May, Stefan-S. Jester, and Sigurd Höger
Journal of the American Chemical Society, 2014, Volume 136, Number 48, Page 16732
[93]
Zeyu Yan, Lang Wang, Julong Cheng, Libei Huang, Chao Zhu, Chi Chen, Ling Miao, and Jianjun Jiang
Journal of Applied Physics, 2014, Volume 116, Number 17, Page 174304
[94]
Sharwatie Ramsaywack, Sila Karaca, Mojtaba Gholami, Adrian H. Murray, Frank Hampel, Robert McDonald, Nuran Elmaci, Hans Peter Lüthi, and Rik R. Tykwinski
The Journal of Organic Chemistry, 2014, Volume 79, Number 21, Page 10013
[95]
Rui-Ning Wang, Xiao-Hong Zheng, Hua Hao, and Zhi Zeng
The Journal of Physical Chemistry C, 2014, Volume 118, Number 40, Page 23328
[96]
Rongji Liu, Huibiao Liu, Yuliang Li, Yuanping Yi, Xinke Shang, Shuangshuang Zhang, Xuelian Yu, Suojiang Zhang, Hongbin Cao, and Guangjin Zhang
Nanoscale, 2014, Volume 6, Number 19, Page 11336
[97]
Joanna Burdyńska, Yuanchao Li, Anant Vikas Aggarwal, Sigurd Höger, Sergei S. Sheiko, and Krzysztof Matyjaszewski
Journal of the American Chemical Society, 2014, Volume 136, Number 36, Page 12762
[98]
Uwe H. F. Bunz, Kai Seehafer, Florian L. Geyer, Markus Bender, Ingo Braun, Emanuel Smarsly, and Jan Freudenberg
Macromolecular Rapid Communications, 2014, Volume 35, Number 17, Page 1466
[99]
J. E. Padilha, A. Fazzio, and Antônio J. R. da Silva
The Journal of Physical Chemistry C, 2014, Volume 118, Number 32, Page 18793
[100]
Michio Inagaki and Feiyu Kang
J. Mater. Chem. A, 2014, Volume 2, Number 33, Page 13193
[101]
Raphael Longuinhos, Elie Albert Moujaes, Simone Silva Alexandre, and R. W. Nunes
Chemistry of Materials, 2014, Volume 26, Number 12, Page 3701
[102]
Jinying Wang, Shuqing Zhang, Jingyuan Zhou, Rong Liu, Ran Du, Hua Xu, Zhongfan Liu, Jin Zhang, and Zhirong Liu
Phys. Chem. Chem. Phys., 2014, Volume 16, Number 23, Page 11303
[103]
Naveen Naveen, Srinivasarao Arulananda Babu, Gurpreet Kaur, Nayyar Ahmad Aslam, and Maheswararao Karanam
RSC Adv., 2014, Volume 4, Number 36, Page 18904
[104]
Nihan Kosku Perkgöz and Cem Sevik
Nanotechnology, 2014, Volume 25, Number 18, Page 185701
[105]
X. N. Niu, D. Z. Yang, M. S. Si, and D. S. Xue
Journal of Applied Physics, 2014, Volume 115, Number 14, Page 143706
[106]
Himadri R. Soni and Prafulla K. Jha
Solid State Communications, 2014, Volume 189, Page 58
[107]
Yongjun Li, Liang Xu, Huibiao Liu, and Yuliang Li
Chemical Society Reviews, 2014, Volume 43, Number 8, Page 2572
[108]
Hongxia Bu, Mingwen Zhao, Wenzheng Dong, Shuangwen Lu, and Xiaopeng Wang
J. Mater. Chem. C, 2014, Volume 2, Number 15, Page 2751
[109]
Mahboobeh Nasr-Esfahani, Iraj Mohammadpoor-Baltork, Ahmad Reza Khosropour, Majid Moghadam, Valiollah Mirkhani, Shahram Tangestaninejad, Vladislav Agabekov, and Hadi Amiri Rudbari
RSC Adv., 2014, Volume 4, Number 27, Page 14291
[110]
Hyeondeok Shin, Sinabro Kang, Jahyun Koo, Hoonkyung Lee, Jeongnim Kim, and Yongkyung Kwon
The Journal of Chemical Physics, 2014, Volume 140, Number 11, Page 114702
[111]
Yi-Guo Xu, Chen Ming, Zheng-Zhe Lin, Fan-Xin Meng, Jun Zhuang, and Xi-Jing Ning
Carbon, 2014, Volume 73, Page 283
[112]
Massimiliano Bartolomei, Estela Carmona-Novillo, Marta I. Hernández, José Campos-Martínez, Fernando Pirani, Giacomo Giorgi, and Koichi Yamashita
The Journal of Physical Chemistry Letters, 2014, Volume 5, Number 4, Page 751
[113]
S. Chandra Shekar and R. S. Swathi
The Journal of Physical Chemistry C, 2014, Volume 118, Number 8, Page 4516
[114]
Jianlong Kou, Xiaoyan Zhou, Hangjun Lu, Fengmin Wu, and Jintu Fan
Nanoscale, 2014, Volume 6, Number 3, Page 1865
[115]
A. I. Podlivaev and L. A. Openov
Physics of the Solid State, 2013, Volume 55, Number 12, Page 2592
[117]
Yinfeng Li, Dibakar Datta, Zhonghua Li, and Vivek B. Shenoy
Computational Materials Science, 2014, Volume 83, Page 212
[118]
Minmin Xue, Hu Qiu, and Wanlin Guo
Nanotechnology, 2013, Volume 24, Number 50, Page 505720
[119]
Yongkyung Kwon, Hyeondeok Shin, and Hoonkyung Lee
Physical Review B, 2013, Volume 88, Number 20
[120]
Chongqin Zhu, Hui Li, Xiao Cheng Zeng, E. G. Wang, and Sheng Meng
Scientific Reports, 2013, Volume 3, Number 1
[121]
Aizhu Wang, Linyang Li, Xiaopeng Wang, Hongxia Bu, and Mingwen Zhao
Diamond and Related Materials, 2014, Volume 41, Page 65
[122]
Zheng-Zhe Lin, Qun Wei, and Xuanmin Zhu
Carbon, 2014, Volume 66, Page 504
[123]
Shouting Huang, Yufeng Liang, and Li Yang
Physical Review B, 2013, Volume 88, Number 7
[124]
Jianlong Kou, Xiaoyan Zhou, Yanyan Chen, Hangjun Lu, Fengmin Wu, and Jintu Fan
The Journal of Chemical Physics, 2013, Volume 139, Number 6, Page 064705
[125]
Qu Yue, Shengli Chang, Jun Kang, Shiqiao Qin, and Jingbo Li
The Journal of Physical Chemistry C, 2013, Volume 117, Number 28, Page 14804
[126]
Xin Lin, Hai-Long Wang, Hui Pan, and Huai-Zhe Xu
Chinese Physics Letters, 2013, Volume 30, Number 7, Page 077305
[127]
Jia-Jia Zheng, Xiang Zhao, Shengbai B. Zhang, and Xingfa Gao
The Journal of Chemical Physics, 2013, Volume 138, Number 24, Page 244708
[128]
Yuhang Jing, Guoxun Wu, Licheng Guo, Yi Sun, and Jun Shen
Computational Materials Science, 2013, Volume 78, Page 22
[129]
S. Chandra Shekar and R. S. Swathi
The Journal of Physical Chemistry A, 2013, Volume 117, Number 36, Page 8632
[130]
Faezeh Farzaneh, Zahra Shafie, Elnaz Rashtizadeh, and Mehdi Ghandi
Reaction Kinetics, Mechanisms and Catalysis, 2013, Volume 110, Number 1, Page 119
[131]
Qing Tang, Zhen Zhou, and Zhongfang Chen
Nanoscale, 2013, Volume 5, Number 11, Page 4541
[132]
Hui-Juan Cui, Xian-Lei Sheng, Qing-Bo Yan, Qing-Rong Zheng, and Gang Su
Physical Chemistry Chemical Physics, 2013, Volume 15, Number 21, Page 8179
[133]
Wen-Sheng Zhang, Wen-Jing Xu, Fei Zhang, and Gui-Rong Qu
Chinese Chemical Letters, 2013, Volume 24, Number 5, Page 407
[134]
Alexandra E. Kulyashova, Viktor N. Sorokoumov, Vladimir V. Popik, and Irina A. Balova
Tetrahedron Letters, 2013, Volume 54, Number 18, Page 2235
[135]
Liang Zhang, Ke Wang, Xuemin Qian, Huibiao Liu, and Zhiqiang Shi
ACS Applied Materials & Interfaces, 2013, Volume 5, Number 7, Page 2761
[136]
Cong Su, Hua Jiang, and Ji Feng
Physical Review B, 2013, Volume 87, Number 7
[137]
Bumned Soodchomshom, I.-Ming Tang, and Rassmidara Hoonsawat
Journal of Applied Physics, 2013, Volume 113, Number 7, Page 073710
[138]
Jia-Jia Zheng, Xiang Zhao, Yuliang Zhao, and Xingfa Gao
Scientific Reports, 2013, Volume 3, Number 1
[139]
Wensheng Zhang, Wenjing Xu, Fei Zhang, Hui Jin, Yuzhe Wang, and Jitao Li
Research on Chemical Intermediates, 2014, Volume 40, Number 4, Page 1337
[140]
V. Ongun Özçelik and S. Ciraci
The Journal of Physical Chemistry C, 2013, Volume 117, Number 5, Page 2175
[141]
A.L. Ivanovskii
Progress in Solid State Chemistry, 2013, Volume 41, Number 1-2, Page 1
[142]
Alexander Kraytsberg and Yair Ein-Eli
Nano Energy, 2013, Volume 2, Number 4, Page 468
[143]
Yi-Qi Zhang, Nenad Kepčija, Martin Kleinschrodt, Katharina Diller, Sybille Fischer, Anthoula C. Papageorgiou, Francesco Allegretti, Jonas Björk, Svetlana Klyatskaya, Florian Klappenberger, Mario Ruben, and Johannes V. Barth
Nature Communications, 2012, Volume 3, Page 1286
[144]
Junjie He, Shuang Ying Ma, Pan Zhou, C. X. Zhang, Chaoyu He, and L. Z. Sun
The Journal of Physical Chemistry C, 2012, Volume 116, Number 50, Page 26313
[145]
Chenghua Sun and Debra J. Searles
The Journal of Physical Chemistry C, 2012, Volume 116, Number 50, Page 26222
[146]
Steven W. Cranford, Dieter B. Brommer, and Markus J. Buehler
Nanoscale, 2012, Volume 4, Number 24, Page 7797
[147]
Tianjiao Shao, Bin Wen, Roderick Melnik, Shan Yao, Yoshiyuki Kawazoe, and Yongjun Tian
The Journal of Chemical Physics, 2012, Volume 137, Number 19, Page 194901
[148]
S. Ajori, R. Ansari, and M. Mirnezhad
Materials Science and Engineering: A, 2013, Volume 561, Page 34
[149]
Xian-Lei Sheng, Hui-Juan Cui, Fei Ye, Qing-Bo Yan, Qing-Rong Zheng, and Gang Su
Journal of Applied Physics, 2012, Volume 112, Number 7, Page 074315
[150]
Debasree Saha, Tanmay Chatterjee, Manabendra Mukherjee, and Brindaban C. Ranu
The Journal of Organic Chemistry, 2012, Volume 77, Number 20, Page 9379
[151]
Brian S. Young, Rainer Herges, and Michael M. Haley
Chemical Communications, 2012, Volume 48, Number 76, Page 9441
[152]
Xinjiang Niu, Chunju Li, Jian Li, and Xueshun Jia
Tetrahedron Letters, 2012, Volume 53, Number 41, Page 5559
[153]
M. Mirnezhad, R. Ansari, H. Rouhi, M. Seifi, and M. Faghihnasiri
Solid State Communications, 2012, Volume 152, Number 20, Page 1885
[154]
Jie Cao, Chi Pui Tang, and Shi-Jie Xiong
Physica B: Condensed Matter, 2012, Volume 407, Number 21, Page 4387
[155]
Daniel Malko, Christian Neiss, and Andreas Görling
Physical Review B, 2012, Volume 86, Number 4
[156]
Xin-Quan Wang, Han-Dong Li, and Jian-Tao Wang
Physical Chemistry Chemical Physics, 2012, Volume 14, Number 31, Page 11107
[157]
Hongyu Zhang, Xiujie He, Mingwen Zhao, Meng Zhang, Lixia Zhao, Xiaojuan Feng, and Youhua Luo
The Journal of Physical Chemistry C, 2012, Volume 116, Number 31, Page 16634
[158]
Steven W. Cranford and Markus J. Buehler
Nanoscale, 2012, Volume 4, Number 15, Page 4587
[159]
Sergej Lysenko, Jeroen Volbeda, Peter G. Jones, and Matthias Tamm
Angewandte Chemie, 2012, Volume 124, Number 27, Page 6861
[160]
Sergej Lysenko, Jeroen Volbeda, Peter G. Jones, and Matthias Tamm
Angewandte Chemie International Edition, 2012, Volume 51, Number 27, Page 6757
[162]
Yulin Yang and Xinmiao Xu
Computational Materials Science, 2012, Volume 61, Page 83
[163]
Daniel Malko, Christian Neiss, Francesc Viñes, and Andreas Görling
Physical Review Letters, 2012, Volume 108, Number 8
[164]
Miroslav Dudič, Ivana Císařová, and Josef Michl
The Journal of Organic Chemistry, 2012, Volume 77, Number 1, Page 68
[165]
Xuemin Qian, Zhiyuan Ning, Yuliang Li, Huibiao Liu, Canbin Ouyang, Qing Chen, and Yongjun Li
Dalton Trans., 2012, Volume 41, Number 3, Page 730
[166]
Miao Yu, Delin Pan, Wei Jia, Wei Chen, and Ning Jiao
Tetrahedron Letters, 2010, Volume 51, Number 9, Page 1287
[167]
Jun Kang, Jingbo Li, Fengmin Wu, Shu-Shen Li, and Jian-Bai Xia
The Journal of Physical Chemistry C, 2011, Volume 115, Number 42, Page 20466
[168]
Katie Campbell, Kristopher J. Ooms, Michael J. Ferguson, Peter J. Stang, Roderick E. Wasylishen, and Rik R. Tykwinski
Canadian Journal of Chemistry, 2011, Volume 89, Number 10, Page 1264
[169]
J. A. Rogers, M. G. Lagally, and R. G. Nuzzo
Nature, 2011, Volume 477, Number 7362, Page 45
[170]
Steven W. Cranford and Markus J. Buehler
Carbon, 2011, Volume 49, Number 13, Page 4111
[171]
Xueshun Jia, Kun Yin, Chunju Li, Jian Li, and Haishan Bian
Green Chemistry, 2011, Volume 13, Number 8, Page 2175
[172]
Michal Juríček, Paul H. J. Kouwer, and Alan E. Rowan
Chemical Communications, 2011, Volume 47, Number 31, Page 8740
[173]
Philippe Bolduc, Alexandre Jacques, and Shawn K. Collins
Journal of the American Chemical Society, 2010, Volume 132, Number 37, Page 12790
[174]
L. D. Pan, L. Z. Zhang, B. Q. Song, S. X. Du, and H.-J. Gao
Applied Physics Letters, 2011, Volume 98, Number 17, Page 173102
[175]
Pablo Rivera-Fuentes, Belén Nieto-Ortega, W. Bernd Schweizer, Juan T. López Navarrete, Juan Casado, and François Diederich
Chemistry - A European Journal, 2011, Volume 17, Number 14, Page 3876
[176]
Hongyu Zhang, Mingwen Zhao, Xiujie He, Zhenhai Wang, Xuejuan Zhang, and Xiangdong Liu
The Journal of Physical Chemistry C, 2011, Volume 115, Number 17, Page 8845
[177]
Kun Yin, Chunju Li, Jian Li, and Xueshun Jia
Green Chemistry, 2011, Volume 13, Number 3, Page 591
[178]
P. Venkat Reddy, Vikas Bajpai, Brijesh Kumar, and Arun K. Shaw
European Journal of Organic Chemistry, 2011, Volume 2011, Number 8, Page 1575
[179]
Kun Yin, Chun-Ju Li, Jian Li, and Xue-Shun Jia
Applied Organometallic Chemistry, 2011, Volume 25, Number 1, Page 16
[180]
[181]
Guoxing Li, Yuliang Li, Huibiao Liu, Yanbing Guo, Yongjun Li, and Daoben Zhu
Chemical Communications, 2010, Volume 46, Number 19, Page 3256
[182]
François Diederich and Milan Kivala
Advanced Materials, 2010, Volume 22, Number 7, Page 803

Comments (0)

Please log in or register to comment.
Log in