Skip to content
Publicly Available Published by De Gruyter January 1, 2009

New preparative methods for allylic boronates and their application in stereoselective catalytic allylborations

  • Dennis G. Hall

Abstract

Stereocontrolled additions of allylic metal reagents to carbonyl compounds constitute one of the most useful classes of transformations in organic synthesis. The recent development of Lewis and Brønsted acid-catalyzed manifolds for the allylboration of carbonyl compounds has opened doors toward an ideal carbonyl allylation methodology using stable and nontoxic allylic boronates as reagents. This paper describes the development of acid-catalyzed allylborations, mechanistic investigations of these new processes, and ongoing efforts toward general catalytic enantioselective allylboration methodologies. The preparation of optically enriched α-substituted allylic boronate reagents is discussed, as well as their applications in Lewis acid-catalyzed additions to afford skeletally diverse products like propionate units, polysubstituted furans, vinylcyclopropanes, and larger ring systems.


Conference

International Symposium on Organometallic Chemistry Directed Towards Organic Synthesis (OMCOS-14), International Symposium on Organometallic Chemistry Directed Toward Organic Synthesis, OMCOS, Organometallic Chemistry Directed Toward Organic Synthesis, 14th, Nara, Japan, 2007-08-02–2007-08-06


References

1. (a) S. E. Denmark, N. G. Almstead. In Modern Carbonyl Chemistry, J. Otera, (Ed.), Chap. 10, pp. 299-402, Wiley-VCH, Weinheim, Germany (2000);Search in Google Scholar

1. (b) S. R. Chemler, W. R. Roush. In Modern Carbonyl Chemistry, J. Otera, (Ed.), Chap. 11, pp. 403-490, Wiley-VCH, Weinheim, Germany (2000).Search in Google Scholar

2. doi:10.1021/cr020050h, S. E. Denmark, J. Fu. Chem. Rev. 103, 2763 (2003).Search in Google Scholar

3. (a) J. W. J. Kennedy, D. G. Hall. In Boronic Acids, D. G. Hall (Ed.), Chap. 6, pp. 241-277, Wiley-VCH, Weinheim, Germany (2005);Search in Google Scholar

3. (b) H. Lachance, D. G. Hall. Org. React. (2008). In press.Search in Google Scholar

4. (a) B. M. Mikhailov, Y. N. Bubnov. Izv. Akad. Nauk. SSSR, Ser. Khim. 1874 (1964);Search in Google Scholar

4. (b) B. M. Mikhailov, Y. N. Bubnov. Chem. Abstr. 62, 11840e (1965).Search in Google Scholar

5. E. Favre, M. C. Gaudemar. C. R. Hebd. Seances Acad. Sci. Paris 263, C 1543 (1966).Search in Google Scholar

6. (a) doi:10.1002/anie.197903061, R. W. Hoffmann, H.-J. Zeiss. Angew. Chem., Int. Ed. Engl. 18, 306 (1979);Search in Google Scholar

6. (b) doi:10.1021/jo00320a015, R. W. Hoffmann, H.-J. Zeiss. J. Org. Chem. 46, 1309 (1981).Search in Google Scholar

7. (a) doi:10.1021/ja00345a085, H. C. Brown, P. K. Jadhav. J. Am. Chem. Soc. 105, 2092 (1983);Search in Google Scholar

7. (b) doi:10.1021/ja00262a017, H. C. Brown, K. S. Bhat. J. Am. Chem. Soc. 108, 293 (1986);Search in Google Scholar

7. (c) P. V. Ramachandran. Aldrichim. Acta 35, 23 (2002).10.1016/B978-081551487-9.50004-9Search in Google Scholar

8. (a) doi:10.1021/jo00230a043, J. Garcia, B. Kim, S. Masamune. J. Org. Chem. 52, 4831 (1987);Search in Google Scholar

8. (b) doi:10.1021/ja00187a061, R. P. Short, S. Masamune. J. Am. Chem. Soc. 111, 1892 (1989).Search in Google Scholar

9. (a) doi:10.1021/ja00196a082, E. J. Corey, C.-M. Yu, S. S. Kim. J. Am. Chem. Soc. 111, 5495 (1989);Search in Google Scholar

9. (b) doi:10.1021/ja00158a064, E. J. Corey, C.-M. Yu, D.-H. Lee. J. Am. Chem. Soc. 112, 878 (1990).Search in Google Scholar

10. (a) doi:10.1021/ja00312a062, W. R. Roush, A. E. Walts, L. K. Hoong. J. Am. Chem. Soc. 107, 8186 (1985);Search in Google Scholar

10. (b) doi:10.1021/ja00173a023, W. R. Roush, K. Ando, D. B. Powers, A. D. Palkowitz, R. L. Halterman. J. Am. Chem. Soc. 112, 6339 (1990).Search in Google Scholar

11. (a) doi:10.1021/ja043612i, C.-H. Burgos, E. Canales, K. Matos, J. A. Soderquist. J. Am. Chem. Soc. 127, 8044 (2005);Search in Google Scholar

11. (b) doi:10.1021/ol0476164, C. Lai, J. A. Soderquist. Org. Lett. 7, 799 (2005);Search in Google Scholar

11. (c) doi:10.1021/ja053865r, E. Canales, K. G. Prasad, J. A. Soderquist. J. Am. Chem. Soc. 127, 11572 (2005).Search in Google Scholar

12. doi:10.1002/hlca.19830660604, S. E. Denmark, E. J. Weber. Helv. Chim. Acta 66, 1655 (1983).Search in Google Scholar

13. (a) doi:10.1021/ja00186a011, Y. Li, K. N. Houk. J. Am. Chem. Soc. 111, 1236 (1989);Search in Google Scholar

13. (b) doi:10.1016/S0040-4020(01)85355-2, C. Gennari, E. Fioravanzo, A. Bernardi, A. Vulpetti. Tetrahedron 50, 8815 (1994);Search in Google Scholar

13. (c) doi:10.1021/jo00059a019, A. Vulpetti, M. Gardner, C. Gennari, A. Bernardi, J. M. Goodman, I. Paterson. J. Org. Chem. 58, 1711 (1993);Search in Google Scholar

13. (d) doi:10.1021/jo981190n, K. Omoto, H. Fujimoto. J. Org. Chem. 63, 8331 (1998);Search in Google Scholar

13. (e) doi:10.1021/jo0164002, J. J. Gajewski, W. Bocian, N. L. Brichford, J. L. Henderson. J. Org. Chem. 67, 4236 (2002).Search in Google Scholar

14. The Type III reagents, not illustrated in Fig. 2, are stereoconvergent reagents that react via a six-membered cyclic transition state like Type I reagents, however, by providing the same diastereomeric product regardless of the geometry of the g-substituted allylic metal reagent. Thus, these reagents, exemplified by allylic chromium species, undergo isomerization of the Z-alkene to the E-isomer prior to the carbonyl addition [1a].Search in Google Scholar

15. doi:10.1039/c39820001115, A. J. Pratt, E. J. Thomas. J. Chem. Soc., Chem. Commun. 1115 (1982).Search in Google Scholar

16. (a) doi:10.1021/ja016391e, J. W. J. Kennedy, D. G. Hall. J. Am. Chem. Soc. 124, 898 (2002);Search in Google Scholar

16. (b) doi:10.1021/jo034465u, N. Zhu, D. G. Hall. J. Org. Chem. 68, 6066 (2003).Search in Google Scholar

17. doi:10.1021/ja027453j, J. W. J. Kennedy, D. G. Hall. J. Am. Chem. Soc. 124, 11586 (2002).Search in Google Scholar

18. T. Ishiyama, T-a. Ahiko, N. Miyaura. J. Am. Chem. Soc. 124, 12414 (2002).Search in Google Scholar

19. doi:10.1021/ja049446w, V. Rauniyar, D. G. Hall. J. Am. Chem. Soc. 126, 4518 (2004).Search in Google Scholar

20. doi:10.1021/jo00293a036, H. C. Brown, U. S. Racherla, P. J. Pellechia. J. Org. Chem. 55, 1868 (1990).Search in Google Scholar

21. doi:10.1021/jo049773m, J. W. J. Kennedy, D. G. Hall. J. Org. Chem. 69, 4412 (2004).Search in Google Scholar

22. (a) doi:10.1021/ja054171l, S.-H. Yu, M. J. Ferguson, R. McDonald, D. G. Hall. J. Am. Chem. Soc. 127, 12808 (2005);Search in Google Scholar

22. (b) doi:10.1021/jo062151b, T. Elford, S.-H. Yu, Y. Arimura, D. G. Hall. J. Org. Chem. 72, 1276 (2007).Search in Google Scholar

23. (a) doi:10.1021/ja036807j, H. Lachance, X. Lu, M. Gravel, D. G. Hall. J. Am. Chem. Soc. 125, 10160 (2003);Search in Google Scholar

23. (b) M. Gravel, H. Lachance, X. Lu, D. G. Hall. Synthesis 1290 (2004).10.1055/s-2004-822359Search in Google Scholar

24. (a) R. W. Hoffmann, T. Herold. Angew. Chem., Int. Ed. Engl. 18, 768 (1978);Search in Google Scholar

24. (b) doi:10.1002/cber.19811140138, T. Herold, U. Schrott, R. W. Hoffmann. Chem. Ber. 111, 359 (1981).Search in Google Scholar

25. (a) doi:10.1002/anie.200301732, P. M. Pihko. Angew. Chem., Int. Ed. 43, 2062 (2004);Search in Google Scholar

25. (b) doi:10.1002/anie.200500154, C. Bolm, T. Rantanen, I. Schiffers, L. Zani. Angew. Chem., Int. Ed. 44, 1758 (2005).Search in Google Scholar

26. doi:10.1002/anie.200460394, H. Yamamoto, K. Futatsugi. Angew. Chem., Int. Ed. 44, 1924 (2005).Search in Google Scholar

27. (a) doi:10.1021/ja00103a052, K. Ishihara, M. Kaneeda, H. Yamamoto. J. Am. Chem. Soc. 116, 11179 (1994);Search in Google Scholar

27. (b) doi:10.1021/ja001164i, S. Nakamura, M. Kaneeda, K. Ishihara, H. Yamamoto. J. Am. Chem. Soc. 122, 8120 (2000);Search in Google Scholar

27. (c) doi:10.1021/ja962414r, K. Ishihara, S. Nakamura, M. Kaneeda, H. Yamamoto. J. Am. Chem. Soc. 118, 12854 (1996);Search in Google Scholar

27. (d) doi:10.1021/jo9812936, K. Ishihara, S. Nakamura, H. Yamamoto. J. Org. Chem. 63, 6444 (1998);Search in Google Scholar

27. (e) doi:10.1021/ja021000x, K. Ishihara, D. Nakashima, Y. Hiraiwa, H. Yamamoto. J. Am. Chem. Soc. 125, 24 (2003).Search in Google Scholar

28. doi:10.1002/anie.200504432, V. Rauniyar, D. G. Hall. Angew. Chem., Int. Ed. 45, 2426 (2006).Search in Google Scholar

29. V. Rauniyar, D. G. Hall. Synthesis 3421 (2007).10.1055/s-2007-983832Search in Google Scholar

30. doi:10.1021/ja047200l, R. Wada, K. Oisaki, M. Kanai, M. Shibasaki. J. Am. Chem. Soc. 126, 8910 (2004).Search in Google Scholar

31. doi:10.1021/ja0651308, S. Lou, P. N. Moquist, S. E. Schaus. J. Am. Chem. Soc. 128, 12660 (2006).Search in Google Scholar

32. (a) doi:10.1351/pac198860010123, R. W. Hoffmann. Pure Appl. Chem. 60, 123 (1988);Search in Google Scholar

32. (b) doi:10.1351/pac199062101993, R. W. Hoffmann, G. Niel, A. Schlapbach. Pure Appl. Chem. 62, 1993 (1990).Search in Google Scholar

33. doi:10.1016/S0022-328X(00)89998-2, R. W. Hoffmann, U. Weidmann. J. Organomet. Chem. 195, 137 (1980).Search in Google Scholar

34. doi:10.1016/j.tetlet.2005.10.115, L. Carosi, H. Lachance, D. G. Hall. Tetrahedron Lett. 46, 8981 (2005).Search in Google Scholar

35. doi:10.1002/anie.200353744, K. Tissot-Croset, D. Polet, A. Alexakis. Angew. Chem., Int. Ed. 43, 2426 (2004).Search in Google Scholar

36. L. Carosi, D. G. Hall. Angew. Chem., Int. Engl. 46, 5913 (2007).Search in Google Scholar

37. (a) doi:10.1016/S0040-4039(00)97300-3, W. R. Roush, P. T. Grover. Tetrahedron Lett. 31, 7567 (1990);Search in Google Scholar

37. (b) doi:10.1021/jo00018a004, A. G. M. Barrett, J. W. Malecha. J. Org. Chem. 56, 5243 (1991);Search in Google Scholar

37. (c) doi:10.1016/S0040-4020(01)88869-4, W. R. Roush, P. T. Grover. Tetrahedron 48, 1981 (1992);Search in Google Scholar

37. (d) doi:10.1021/jo961840s, J. A. Hunt, W. R. Roush. J. Org. Chem. 62, 1112 (1997);Search in Google Scholar

37. (e) doi:10.1016/S0040-4039(00)01526-4, W. R. Roush, A. N. Pinchuk, G. C. Micalizio. Tetrahedron Lett. 41, 9413 (2000);Search in Google Scholar

37. (f) doi:10.1021/ja028055j, E. M. Flamme, W. R. Roush. J. Am. Chem. Soc. 124, 13644 (2002);Search in Google Scholar

37. (g) doi:10.1021/jo991205x, A. G. M. Barrett, D. C. Braddock, P. D. de Koning, A. J. P. White, D. J. J. Williams. J. Org. Chem. 65, 375 (2000).Search in Google Scholar

38. doi:10.1021/ja068985t, F. Peng, D. G. Hall. J. Am. Chem. Soc. 129, 3070 (2007).Search in Google Scholar

39. (a) doi:10.1016/S0040-4039(00)73723-3, P. Mohr. Tetrahedron Lett. 34, 6251 (1993);Search in Google Scholar

39. (b) doi:10.1055/s-1997-1062, J. H. Cassidy, S. P. Marsden, G. Stemp. Synlett 1411 (1997);Search in Google Scholar

39. (c) doi:10.1016/S0040-4039(97)10147-2, C. Meyer, J. Cossy. Tetrahedron Lett. 38, 7861 (1997).Search in Google Scholar

40. doi:10.1021/ja0037163, R. E. Taylor, F. C. Engelhardt, M. J. Schmitt, H. Yuan. J. Am. Chem. Soc. 123, 2964 (2001).Search in Google Scholar

41. doi:10.1002/1521-3773(20020816)41:16<3059::AID-ANIE3059>3.0.CO;2-I, K. Gademann, D. E. Chavez, E. N. Jacobsen. Angew. Chem., Int. Ed. 41, 3059 (2002).Search in Google Scholar

42. doi:10.1021/ja036368o, X. Gao, D. G. Hall. J. Am. Chem. Soc. 125, 9308 (2003).Search in Google Scholar

43. doi:10.1021/ja042827p, X. Gao, D. G. Hall. J. Am. Chem. Soc. 127, 1628 (2005).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2008-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1351/pac200880050913/html
Scroll to top button