Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 80, Issue 5

Issues

Palladium-catalyzed selective activation of allyl alcohols as allyl cations, allyl anions, and zwitterionic trimethylenemethanes

Yoshinao Tamaru
  • Corresponding author
  • Department of Applied Chemistry, Faculty of Engineering, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Masanari Kimura
  • Corresponding author
  • Department of Applied Chemistry, Faculty of Engineering, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-01-01 | DOI: https://doi.org/10.1351/pac200880050979

Pd-Et3B catalytic system promotes the generation of allyl cations, allyl anions, and zwitterionic trimethylenemethane species from the corresponding allylic alcohols. Allyl cations react with a wide variety of nucleophiles, e.g., amines, active methylene compounds, 1,3,5-trihydroxybenzene, indoles, aldehydes (at the α-position). The reaction is extended to dehydrative Grob fragmentation of 1,3-diols. Allyl anions react with aldimines to give homoallyl amines. Zwitterionic trimethylenemethane, generated from 2-methylene-1,3-propanediol, reacts with aldehydes and aldimines to provide 3-methylenecyclopentanols and 3-methylenepyrrolidines, respectively. Vinyl epoxide can be utilized as a synthetic equivalent of 3-butenyl 2-anion-1-cation.

Keywords: allyl alcohols; allyl anions; allyl cations; catalysis; palladium; triethylborane; trimethylenemethane; umpolung

Conference

International Symposium on Organometallic Chemistry Directed Towards Organic Synthesis (OMCOS-14), International Symposium on Organometallic Chemistry Directed Toward Organic Synthesis, OMCOS, Organometallic Chemistry Directed Toward Organic Synthesis, 14th, Nara, Japan, 2007-08-02–2007-08-06

References

  • 1.

    , Review: Y. Tamaru. Eur. J. Org. Chem. 13, 2647 (2005).CrossrefGoogle Scholar

  • 2.

    , Pd-catalyzed formation of allylboranes from allyl alcohols: V. J. Olsson, N. Selander, K. J. Szabo. J. Am. Chem. Soc. 128, 4588 (2006).CrossrefGoogle Scholar

  • 3.

    , M. Kimura, M. Futamata, K. Shibata, Y. Tamaru. Chem. Commun. 234 (2003).CrossrefGoogle Scholar

  • 4. (a)

    , Y. Tamaru, Y. Horino, M. Araki, S. Tanaka, M. Kimura. Tetrahedron Lett. 41, 5705 (2000);CrossrefGoogle Scholar

  • 4. (b)

    , Y. Horino, M. Naito, M. Kimura, S. Tanaka, Y. Tamaru. Tetrahedron Lett. 42, 3113 (2001);CrossrefGoogle Scholar

  • 4. (c)

    , M. Mimura, R. Mukai, N. Tanigawa, S. Tanaka, Y. Tamaru. Tetrahedron 59, 7767 (2003).CrossrefGoogle Scholar

  • 5.

    M. Kimura, M. Fukasaka, Y. Tamaru. Synthesis 3611 (2006).Google Scholar

  • 6.

    , J. Herzig, B. Erthal. Monatsh. Chem. 31, 827 (1910).CrossrefGoogle Scholar

  • 7.

    Surprisingly, 2,2,4,4,6,6-hexaallylcyclohexan-1,3,5-trione is a new compound. This may be due to difficult availability of hexa-alkylation products suggested by ref. [6].Google Scholar

  • 8. (a)

    , M. Kimura, M. Futamata, R. Mukai, Y. Tamaru. J. Am. Chem. Soc. 127, 4592 (2005);CrossrefGoogle Scholar

  • 8. (b)

    M. Kimura, M. Fukasaka, Y. Tamaru. Heterocycles 67, 535 (2006).Google Scholar

  • 9.

    , B. M. Trost, J. Quancard. J. Am. Chem. Soc. 128, 6314 (2006).CrossrefGoogle Scholar

  • 10.

    Y. Tamaru, M. Kimura, M. Futamata, Y. Shikina. Manuscript in preparation.Google Scholar

  • 11. (a)

    , M. S. Morales-Rios, O. R. Suarez-Castillo, J. J. Trujillo-Serrato, P. Joseph-Nathan. J. Org. Chem. 66, 1186 (2001);CrossrefGoogle Scholar

  • 11. (b)

    , G. H. Tan, X. Zhu, A. Ganesan. Org. Lett. 5, 1801 (2003);CrossrefGoogle Scholar

  • 11. (c)

    , F. Hernandez, C. Avendano, M. Sollhuber. Tetrahedron Lett. 44, 3367 (2003).CrossrefGoogle Scholar

  • 12. (a)

    , B. M. Trost, E. Keinan. Tetrahedron Lett. 21, 2591 (1980);CrossrefGoogle Scholar

  • 12. (b)

    , J. Tsuji, I. Minami, I. Shimizu. Chem. Lett. 1325 (1983).CrossrefGoogle Scholar

  • 13.

    , K. Hiroi, J. Abe, K. Suya, S. Sato, T. Koyama. J. Org. Chem. 59, 203 (1994).CrossrefGoogle Scholar

  • 14.

    , M. Kimura, Y. Horino, R. Mukai, S. Tanaka, Y. Tamaru. J. Am. Chem. Soc. 123, 10401 (2001).CrossrefGoogle Scholar

  • 15.

    Here, the primary and secondary aldehydes refer to those aldehydes bearing one and two substituents on the C2 of acetaldehyde, respectively.Google Scholar

  • 16. (a)

    , H. Harayama, T. Kuroki, M. Kimura, S. Tanaka, Y. Tamaru. Angew. Chem., Int. Ed. Engl. 36, 2352 (1997);CrossrefGoogle Scholar

  • 16. (b)

    , H. Harayama, M. Kimura, S. Tanaka, Y. Tamaru. Tetrahedron Lett. 39, 8475 (1998);CrossrefGoogle Scholar

  • 16. (c)

    , M. Mori, M. Kimura, Y. Takahashi, Y. Tamaru. Chem. Commun. 4303 (2006).CrossrefGoogle Scholar

  • 17.

    , M. Kimura, M. Mori, Y. Tamaru. Chem. Commun. 4504 (2007).CrossrefGoogle Scholar

  • 18. (a)

    , M. Kimura, T. Tomizawa, Y. Horino, S. Tanaka, Y. Tamaru. Tetrahedron Lett. 41, 3627 (2000);CrossrefGoogle Scholar

  • 18. (b)

    , M. Kimura, M. Shimizu, K. Shibata, M. Tazoe, Y. Tamaru. Angew. Chem., Int. Ed. 42, 3392 (2003);CrossrefGoogle Scholar

  • 18. (c)

    , M. Kimura, M. Shimizu, S. Tanaka, Y. Tamaru. Tetrahedron 61, 3709 (2005);CrossrefGoogle Scholar

  • 18. (d)

    , M. Shimizu, M. Kimura, Y. Tamaru. Chem.Eur. J. 11, 6629 (2005).CrossrefGoogle Scholar

  • 19.

    , M. Shimizu, M. Kimura, T. Watanabe, Y. Tamaru. Org. Lett. 7, 637 (2005).CrossrefGoogle Scholar

  • 20.

    Y. Tamaru, M. Kimura, M. Hashimoto. Manuscript in preparation.Google Scholar

  • 21.

    , R. Mukai, Y. Horino, S. Tanaka, Y. Tamaru, M. Kimura. J. Am. Chem. Soc. 126, 11138 (2004).CrossrefGoogle Scholar

  • 22. (a)

    , B. M. Trost, S. A. King. J. Am. Chem. Soc. 112, 408 (1990);CrossrefGoogle Scholar

  • 22. (b)

    , L. A. Paquette, D. R. Sauer, D. G. Gleary, M. A. Kinsella, C. M. Blackwell, L. G. Anderson. J. Am. Chem. Soc. 114, 7375 (1992);CrossrefGoogle Scholar

  • 22. (c)

    , D. A. Singleton, B. E. Schulmeier. J. Am. Chem. Soc. 121, 9313 (1999);CrossrefGoogle Scholar

  • 22. (d)

    , B. M. Trost, M. L. Crawley. J. Am. Chem. Soc. 124, 9328 (2002).CrossrefGoogle Scholar

  • 23.

    , H. Nakamura, K. Aoyagi, J.-G. Shim, Y. Yamamoto. J. Am. Chem. Soc. 123, 372 (2001).CrossrefGoogle Scholar

  • 24.

    Y. Tamaru, M. Kimura, T. Watanabe, T. Tamaki. Manuscript submitted for publication.Google Scholar

  • 25.

    , B. M. Trost, C. M. Marrs. J. Am. Chem. Soc. 115, 6636 (1993).CrossrefGoogle Scholar

  • 26.

    , M. Kimura, R. Mukai, T. Tamaki, Y. Horino, Y. Tamaru. J. Am. Chem. Soc. 129, 4122 (2007).CrossrefGoogle Scholar

About the article

Published Online: 2009-01-01

Published in Print: 2008-01-01


Citation Information: Pure and Applied Chemistry, Volume 80, Issue 5, Pages 979–991, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/pac200880050979.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
S. Hadi Nazari, Norma Tiempos-Flores, Kelton G. Forson, Jefferson E. Bourdeau, and David J. Michaelis
The Journal of Organic Chemistry, 2018
[2]
Aika Shimizu, Goki Hirata, Gen Onodera, and Masanari Kimura
Advanced Synthesis & Catalysis, 2018
[3]
Goki Hirata, Hideaki Satomura, Hidenobu Kumagae, Aika Shimizu, Gen Onodera, and Masanari Kimura
Organic Letters, 2017
[4]
Yue-Gang Chen, Bin Shuai, Cong Ma, Xiu-Jie Zhang, Ping Fang, and Tian-Sheng Mei
Organic Letters, 2017, Volume 19, Number 11, Page 2969
[5]
Annavareddi Naresh, Kanakaraju Marumudi, A. C. Kunwar, and Batchu Venkateswara Rao
Organic Letters, 2017, Volume 19, Number 7, Page 1642
[6]
Goki Hirata, Naoshi Yamada, Shohei Sanada, Gen Onodera, and Masanari Kimura
Organic Letters, 2015, Volume 17, Number 3, Page 600
[7]
Persis Dhankher, Laure Benhamou, and Tom D. Sheppard
Chemistry - A European Journal, 2014, Volume 20, Number 41, Page 13375
[8]
Hui Zhou, Huameng Yang, Hongyu Yin, Muwen Liu, Chungu Xia, and Gaoxi Jiang
RSC Adv., 2014, Volume 4, Number 49, Page 25596
[9]
Masanari Kimura, Daiki Takushima, Masahiro Fukushima, Hideaki Satomura, and Gen Onodera
HETEROCYCLES, 2012, Volume 86, Number 1, Page 171
[10]
Emma C. Barnes, Vanida Choomuenwai, Katherine T. Andrews, Ronald J. Quinn, and Rohan A. Davis
Organic & Biomolecular Chemistry, 2012, Volume 10, Number 20, Page 4015
[11]
Yumi Yamaguchi, Mariko Hashimoto, Katsumi Tohyama, and Masanari Kimura
Tetrahedron Letters, 2011, Volume 52, Number 8, Page 913
[12]
Gaoxi Jiang and Benjamin List
Advanced Synthesis & Catalysis, 2011, Volume 353, Number 10, Page 1667
[13]
Gaoxi Jiang and Benjamin List
Angewandte Chemie International Edition, 2011, Volume 50, Number 40, Page 9471

Comments (0)

Please log in or register to comment.
Log in