Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2016: 2.626
5-year IMPACT FACTOR: 3.210

CiteScore 2016: 2.45

SCImago Journal Rank (SJR) 2016: 0.972
Source Normalized Impact per Paper (SNIP) 2016: 1.049

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 80, Issue 5

Issues

Boryllithium: A novel boron nucleophile and its application in the synthesis of borylmetal complexes

Makoto Yamashita
  • Corresponding author
  • Department of Chemistry and Biotechnology, Graduate School of Engineering,The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kyoko Nozaki
  • Corresponding author
  • Department of Chemistry and Biotechnology, Graduate School of Engineering,The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-01-01 | DOI: https://doi.org/10.1351/pac200880051187

The first boryl anion, boryllithium, was synthesized by a reduction of bromoborane precursor using lithium naphthalenide in tetrahydrofuran (THF) solvent at -45 °C. Structural and spectroscopic study revealed an ionic character of B-Li bond. Boryllithium could be utilized as a source of boryl ligand in the transition-metal chemistry. Structural and spectroscopic features of the resulting boryl complexes confirmed the large trans influence of boryl ligand.

Keywords: boron; boryl anion; boryl complex; crystal structure; lithium

Conference

International Symposium on Organometallic Chemistry Directed Towards Organic Synthesis (OMCOS-14), International Symposium on Organometallic Chemistry Directed Toward Organic Synthesis, OMCOS, Organometallic Chemistry Directed Toward Organic Synthesis, 14th, Nara, Japan, 2007-08-02–2007-08-06

References

  • 1.

    B. J. Wakefield. Organolithium Methods, Academic Press, London (1988).Google Scholar

  • 2.

    H. Noth. In Science of Synthesis, D. E. Kaufmann, D. S. Matteson (Eds.), pp. 139-178, Georg Thieme Verlag, Stuttgart (2005).Google Scholar

  • 3.

    , R. W. Auten, C. A. Kraus. J. Am. Chem. Soc. 74, 3398 (1952).CrossrefGoogle Scholar

  • 4.

    , J. L. R. Williams, J. C. Doty, P. J. Grisdale, R. Searle, T. H. Regan, G. P. Happ, D. P. Maier. J. Am. Chem. Soc. 89, 5153 (1967).CrossrefGoogle Scholar

  • 5.

    , L. Weber, M. Schnieder, P. Lonnecke. J. Chem. Soc., Dalton Trans. 3459 (2001).CrossrefGoogle Scholar

  • 6.

    , R. Koster, G. Benedikt. Angew. Chem., Int. Ed. Engl. 2, 219 (1963).CrossrefGoogle Scholar

  • 7.

    , R. Koster, G. Benedikt. Angew. Chem., Int. Ed. Engl. 3, 515 (1964).CrossrefGoogle Scholar

  • 8.

    , K. Smith, K. Swaminathan. J. Chem. Soc., Dalton Trans. 2297 (1976).CrossrefGoogle Scholar

  • 9.

    , J. D. Wilkey, G. B. Schuster. J. Org. Chem. 52, 2117 (1987).CrossrefGoogle Scholar

  • 10.

    , S. Boyatzis, J. D. Wilkey, G. B. Schuster. J. Org. Chem. 55, 4537 (1990).CrossrefGoogle Scholar

  • 11.

    As examples of sp3 boron anions, the existence of base-stabilized boryl anions (base-BH2-M+, where base is amine or phosphine and R is n-Bu or H) was suggested as intermediates in reactions with electrophiles. See refs. [12-15]. Also, bishomotriboriranide may be regarded as a boryl anion equivalent where the boron anion is electronically stabilized by a neighboring diboron unit to form an sp-hybridized boron atom. However, there is no B-Li bond in this molecule. See ref. [16].Google Scholar

  • 12.

    , T. D. Parsons, J. M. Self, L. H. Schaad. J. Am. Chem. Soc. 89, 3446 (1967).CrossrefGoogle Scholar

  • 13.

    , B. R. Gragg, G. E. Ryschkewitsch. Inorg. Chem. 15, 1209 (1976).CrossrefGoogle Scholar

  • 14.

    , A. Blumenthal, P. Bissinger, H. Schmidbaur. J. Organomet. Chem. 462, 107 (1993).CrossrefGoogle Scholar

  • 15.

    , T. Imamoto, T. Hikosaka. J. Org. Chem. 59, 6753 (1994).CrossrefGoogle Scholar

  • 16.

    , M. Unverzagt, G. Subramanian, M. Hofmann, P. V. Schleyer, S. Berger, K. Harms, W. Massa, A. Berndt. Angew. Chem., Int. Ed. Engl. 36, 1469 (1997).CrossrefGoogle Scholar

  • 17.

    , G. J. Irvine, M. J. G. Lesley, T. B. Marder, N. C. Norman, C. R. Rice, E. G. Robins, W. R. Roper, G. R. Whittell, L. J. Wright. Chem. Rev. 98, 2685 (1998).CrossrefGoogle Scholar

  • 18.

    , H. Braunschweig. Angew. Chem., Int. Ed. 37, 1786 (1998).CrossrefGoogle Scholar

  • 19.

    , H. Braunschweig, M. Colling. Coord. Chem. Rev. 223, 1 (2001).CrossrefGoogle Scholar

  • 20.

    , H. Braunschweig, C. Kollann, D. Rais. Angew. Chem., Int. Ed. 45, 5254 (2006).CrossrefGoogle Scholar

  • 21.

    , M. R. Smith III. Prog. Inorg. Chem. 48, 505 (1999).CrossrefGoogle Scholar

  • 22.

    , S. Aldridge, D. L. Coombs. Coord. Chem. Rev. 248, 535 (2004).CrossrefGoogle Scholar

  • 23.

    , D. Mannig, H. Noth. Angew. Chem., Int. Ed. Engl. 24, 878 (1985).CrossrefGoogle Scholar

  • 24.

    , G. Lesley, P. Nguyen, N. J. Taylor, T. B. Marder, A. J. Scott, W. Clegg, N. C. Norman. Organometallics 15, 5137 (1996).CrossrefGoogle Scholar

  • 25.

    , T. Ishiyama, J. Takagi, K. Ishida, N. Miyaura, N. R. Anastasi, J. F. Hartwig. J. Am. Chem. Soc. 124, 390 (2002).CrossrefGoogle Scholar

  • 26.

    , K. M. Waltz, J. F. Hartwig. J. Am. Chem. Soc. 122, 11358 (2000).CrossrefGoogle Scholar

  • 27.

    , T. M. Boller, J. M. Murphy, M. Hapke, T. Ishiyama, N. Miyaura, J. F. Hartwig. J. Am. Chem. Soc. 127, 14263 (2005).CrossrefGoogle Scholar

  • 28.

    , S. A. Westcott, N. J. Taylor, T. B. Marder, R. T. Baker, N. J. Jones, J. C. Calabrese. J. Chem. Soc. Chem. Commun. 304 (1991).CrossrefGoogle Scholar

  • 29.

    , R. T. Baker, J. C. Calabrese, S. A. Westcott, P. Nguyen, T. B. Marder. J. Am. Chem. Soc. 115, 4367 (1993).CrossrefGoogle Scholar

  • 30. (a)

    , H. Noth, G. Schmid. Angew. Chem., Int. Ed. Engl. 2, 623 (1963);CrossrefGoogle Scholar

  • 30. (b)

    , J. F. Hartwig, S. Huber. J. Am. Chem. Soc. 115, 4908 (1993).CrossrefGoogle Scholar

  • 31. (a)

    G. Schmid, H. Noth. Z. Naturforsch. B 20, 1008 (1965);Google Scholar

  • 31. (b)

    , R. T. Baker, D. W. Ovenall, J. C. Calabrese, S. A. Westcott, N. J. Taylor, I. D. Williams, T. B. Marder. J. Am. Chem. Soc. 112, 9399 (1990);CrossrefGoogle Scholar

  • 31. (c)

    , J. R. Knorr, J. S. Merola. Organometallics 9, 3008 (1990).CrossrefGoogle Scholar

  • 32.

    , Y. Kawano, T. Yasue, M. Shimoi. J. Am. Chem. Soc. 121, 11744 (1999).CrossrefGoogle Scholar

  • 33.

    , K. Takahashi, T. Ishiyama, N. Miyaura. J. Organomet. Chem. 625, 47 (2001).CrossrefGoogle Scholar

  • 34.

    , H. Ito, C. Kawakami, M. Sawamura. J. Am. Chem. Soc. 127, 16034 (2005).CrossrefGoogle Scholar

  • 35.

    , D. S. Laitar, P. Mueller, J. P. Sadighi. J. Am. Chem. Soc. 127, 17196 (2005).CrossrefGoogle Scholar

  • 36.

    , Y. Segawa, M. Yamashita, K. Nozaki. Science 314, 113 (2006).CrossrefGoogle Scholar

  • 37.

    , M. Yamashita, Y. Suzuki, Y. Segawa, K. Nozaki. J. Am. Chem. Soc. 129, 9570 (2007).CrossrefGoogle Scholar

  • 38.

    , Y. Segawa, M. Yamashita, K. Nozaki. Angew. Chem., Int. Ed. 46, 6710 (2007).CrossrefGoogle Scholar

  • 39.

    , M. Wagner, N. J. R. van Eikema Hommes, H. Noth, P. v. R. Schleyer. Inorg. Chem. 34, 607 (1995).CrossrefGoogle Scholar

  • 40.

    , A. J. Arduengo, III, R. L. Harlow, M. Kline. J. Am. Chem. Soc. 113, 361 (1991).CrossrefGoogle Scholar

  • 41.

    , H.-W. Wanzlick. Angew. Chem., Int. Ed. Engl. 1, 75 (1962).CrossrefGoogle Scholar

  • 42.

    , N. Metzler-Nolte. New J. Chem. 22, 793 (1998).CrossrefGoogle Scholar

  • 43.

    , A. Sundermann, M. Reiher, W. W. Schoeller. Eur. J. Inorg. Chem. 305 (1998).CrossrefGoogle Scholar

  • 44.

    , E. S. Schmidt, A. Jockisch, H. Schmidbaur. J. Am. Chem. Soc. 121, 9758 (1999).CrossrefGoogle Scholar

  • 45.

    , R. J. Baker, R. D. Farley, C. Jones, M. Kloth, D. M. Murphy. J. Chem. Soc., Dalton Trans. 3844 (2002).CrossrefGoogle Scholar

  • 46.

    , R. J. Brotherton, A. L. McCloskey, L. L. Petterson, H. Steinberg. J. Am. Chem. Soc. 82, 6242 (1960).CrossrefGoogle Scholar

  • 47.

    , V. M. Dembitsky, H. Abu Ali, M. Srebnik. Adv. Organomet. Chem. 51, 193 (2004).CrossrefGoogle Scholar

  • 48.

    T. B. Marder. In Science of Synthesis, D. E. Kaufmann, D. S. Matteson (Eds.), pp. 117-137, Georg Thieme Verlag, Stuttgart (2005).Google Scholar

  • 49.

    , M. B. Abrams, B. L. Scott, R. T. Baker. Organometallics 19, 4944 (2000).CrossrefGoogle Scholar

  • 50.

    , Hydroborane 6 was independently synthesized by a reduction of 4 with LiAlH4 as was reported for the other N-heterocyclic hydroborane. See: L. Weber, E. Dobbert, H. G. Stammler, B. Neumann, R. Boese, D. Blaser. Eur. J. Inorg. Chem. 491 (1999).CrossrefGoogle Scholar

  • 51.

    J. Emsley. The Elements, Oxford University Press, New York (1998).Google Scholar

  • 52.

    , A. J. Arduengo, III, R. Krafczyk, R. Schmutzler. Tetrahedron 55, 14523 (1999).CrossrefGoogle Scholar

  • 53.

    , A. J. Arduengo, D. A. Dixon, K. K. Kumashiro, C. Lee, W. P. Power, K. W. Zilm. J. Am. Chem. Soc. 116, 6361 (1994).CrossrefGoogle Scholar

  • 54.

    , N. P. Rath, T. P. Fehlner. J. Am. Chem. Soc. 110, 5345 (1988).CrossrefGoogle Scholar

  • 55.

    , R. J. Baker, C. Jones, J. A. Platts. J. Am. Chem. Soc. 125, 10534 (2003).CrossrefGoogle Scholar

  • 56.

    R. J. Baker, C. Jones, J. A. Platts. J. Chem. Soc., Dalton Trans. 3673 (2003).CrossrefGoogle Scholar

  • 57.

    S. Aldridge, R. J. Baker, N. D. Coombs, C. Jones, R. P. Rose, A. Rossin, D. J. Willock. J. Chem. Soc., Dalton Trans. 3313 (2006).CrossrefGoogle Scholar

  • 58.

    , P. L. Arnold, S. T. Liddle, J. McMaster, C. Jones, D. P. Mills. J. Am. Chem. Soc. 129, 5360 (2007).CrossrefGoogle Scholar

  • 59.

    , S. P. Green, C. Jones, D. P. Mills, A. Stasch. Organometallics 26, 3424 (2007).CrossrefGoogle Scholar

  • 60.

    C. Jones, R. P. Rose, A. Stasch. J. Chem. Soc., Dalton Trans. 2997 (2007).CrossrefGoogle Scholar

  • 61.

    , R. J. Baker, C. Jones. Coord. Chem. Rev. 249, 1857 (2005).CrossrefGoogle Scholar

  • 62.

    , H. Braunschweig. Angew. Chem., Int. Ed. 46, 1946 (2007).CrossrefGoogle Scholar

  • 63.

    , H. M. Colquhoun, T. J. Greenhough, M. G. H. Wallbridge. J. Chem. Soc., Chem. Commun. 192 (1980).CrossrefGoogle Scholar

  • 64.

    , A. J. C. Jeffery, P. A. Jelliss, F. G. A. Stone. Organometallics 13, 2651 (1994).CrossrefGoogle Scholar

  • 65.

    , H. Braunschweig, K. Radacki, D. Rais, D. Scheschkewitz. Angew. Chem., Int. Ed. 44, 5651 (2005).CrossrefGoogle Scholar

  • 66.

    , J. Zhu, Z. Y. Lin, T. B. Marder. Inorg. Chem. 44, 9384 (2005).CrossrefGoogle Scholar

  • 67.

    , H. Braunschweig, P. Brenner, A. Muller, K. Radacki, D. Rais, K. Uttinger. Chem.Eur. J. 13, 7171 (2007).CrossrefGoogle Scholar

  • 68.

    , T. Ramnial, C. D. Abernethy, M. D. Spicer, I. D. McKenzie, I. D. Gay, J. A. C. Clyburne. Inorg. Chem. 42, 1391 (2003).CrossrefGoogle Scholar

  • 69.

    , P. de Fremont, N. M. Scott, E. D. Stevens, S. P. Nolan. Organometallics 24, 2411 (2005).CrossrefGoogle Scholar

  • 70.

    N. C. Baenziger, W. E. Bennett, D. M. Soboroff. Acta Crystallogr., Sect. B 32, 962 (1976).CrossrefGoogle Scholar

  • 71.

    P. D. Gavens, J. J. Guy, M. J. Mays, G. M. Sheldrick. Acta Crystallogr., Sect. B 33, 137 (1977).CrossrefGoogle Scholar

  • 72.

    , X. Hong, K. K. Cheung, C. X. Guo, C. M. Che. J. Chem. Soc., Dalton Trans. 1867 (1994).CrossrefGoogle Scholar

About the article

Published Online: 2009-01-01

Published in Print: 2008-01-01


Citation Information: Pure and Applied Chemistry, Volume 80, Issue 5, Pages 1187–1194, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/pac200880051187.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Di Wu, Yongxin Li, Rakesh Ganguly, and Rei Kinjo
Chemical Communications, 2017
[3]
Lothar Weber
European Journal of Inorganic Chemistry, 2017, Volume 2017, Number 29, Page 3461
[4]
Andrea Causero, Holger Elsen, Jürgen Pahl, and Sjoerd Harder
Angewandte Chemie International Edition, 2017, Volume 56, Number 24, Page 6906
[5]
Andrea Causero, Holger Elsen, Jürgen Pahl, and Sjoerd Harder
Angewandte Chemie, 2017, Volume 129, Number 24, Page 7010
[6]
Diego García-López, Jessica Cid, Ruben Marqués, Elena Fernández, and Jorge J. Carbó
Chemistry - A European Journal, 2017, Volume 23, Number 21, Page 5066
[7]
Dong-Yu Wang, Hiroki Minami, Chao Wang, and Masanobu Uchiyama
Chemistry Letters, 2015, Volume 44, Number 10, Page 1380
[8]
Zsolt Majzik, Ana B. Cuenca, Niko Pavliček, Núria Miralles, Gerhard Meyer, Leo Gross, and Elena Fernández
ACS Nano, 2016, Volume 10, Number 5, Page 5340
[9]
Anna Chrostowska, Alain Dargelos, Patrick Baylère, Clovis Darrigan, Lothar Weber, and Johannes Halama
European Journal of Inorganic Chemistry, 2015, Volume 2015, Number 31, Page 5196
[10]
Sabrina Pietsch, Emily C. Neeve, David C. Apperley, Rüdiger Bertermann, Fanyang Mo, Di Qiu, Man Sing Cheung, Li Dang, Jianbo Wang, Udo Radius, Zhenyang Lin, Christian Kleeberg , and Todd B. Marder 
Chemistry - A European Journal, 2015, Volume 21, Number 19, Page 7082
[11]
Lothar Weber and Lena Böhling
Coordination Chemistry Reviews, 2015, Volume 284, Page 236
[12]
Lothar Weber, Johannes Halama, Kenny Hanke, Lena Böhling, Andreas Brockhinke, Hans-Georg Stammler, Beate Neumann, and Mark A. Fox
Dalton Trans., 2014, Volume 43, Number 8, Page 3347
[13]
Anna Chrostowska, Audrey Mazière, Alain Dargelos, Alain Graciaa, Clovis Darrigan, Lothar Weber, and Johannes Halama
European Journal of Inorganic Chemistry, 2013, Volume 2013, Number 33, Page 5672
[14]
Lothar Weber, Johannes Halama, Lena Böhling, Andreas Brockhinke, Anna Chrostowska, Clovis Darrigan, Alain Dargelos, Hans-Georg Stammler, and Beate Neumann
European Journal of Inorganic Chemistry, 2013, Volume 2013, Number 24, Page 4268
[15]
Igor L. Fedushkin, Olga V. Markina, Anton N. Lukoyanov, Alexander G. Morozov, Evgenii V. Baranov, Maxim O. Maslov, and Sergey Yu. Ketkov
Dalton Transactions, 2013, Volume 42, Number 22, Page 7952
[16]
Lothar Weber, Daniel Eickhoff, Johannes Halama, Stefanie Werner, Jan Kahlert, Hans-Georg Stammler, and Beate Neumann
European Journal of Inorganic Chemistry, 2013, Volume 2013, Number 14, Page 2608
[17]
Lothar Weber
European Journal of Inorganic Chemistry, 2012, Volume 2012, Number 34, Page 5595
[18]
Jessica Cid, Jorge J. Carbó, and Elena Fernández
Chemistry - A European Journal, 2012, Volume 18, Number 40, Page 12794
[19]
Dawei Tian, Jiang Jiang, Hongfan Hu, Jianying Zhang, and Chunming Cui
Journal of the American Chemical Society, 2012, Volume 134, Number 36, Page 14666
[20]
Lothar Weber, Daniel Eickhoff, Jan Kahlert, Lena Böhling, Andreas Brockhinke, Hans-Georg Stammler, Beate Neumann, and Mark A. Fox
Dalton Transactions, 2012, Volume 41, Number 34, Page 10328
[21]
Lothar Weber, Henry Kuhtz, Lena Böhling, Andreas Brockhinke, Anna Chrostowska, Alain Dargelos, Audrey Mazière, Hans-Georg Stammler, and Beate Neumann
Dalton Transactions, 2012, Volume 41, Number 34, Page 10440
[22]
Lothar Weber, Jan Kahlert, Regina Brockhinke, Lena Böhling, Andreas Brockhinke, Hans-Georg Stammler, Beate Neumann, Rachel A. Harder, and Mark A. Fox
Chemistry - A European Journal, 2012, Volume 18, Number 27, Page 8347
[23]
Nicole Dettenrieder, H. Martin Dietrich, Christoph Schädle, Cäcilia Maichle-Mössmer, Karl W. Törnroos, and Reiner Anwander
Angewandte Chemie, 2012, Volume 124, Number 18, Page 4537
[24]
Nicole Dettenrieder, H. Martin Dietrich, Christoph Schädle, Cäcilia Maichle-Mössmer, Karl W. Törnroos, and Reiner Anwander
Angewandte Chemie International Edition, 2012, Volume 51, Number 18, Page 4461
[25]
Jessica Cid, Henrik Gulyás, Jorge J. Carbó, and Elena Fernández
Chemical Society Reviews, 2012, Volume 41, Number 9, Page 3558
[26]
Lothar Weber, Daniel Eickhoff, Todd B. Marder, Mark A. Fox, Paul J. Low, Austin D. Dwyer, David J. Tozer, Stefanie Schwedler, Andreas Brockhinke, Hans-Georg Stammler, and Beate Neumann
Chemistry - A European Journal, 2012, Volume 18, Number 5, Page 1369
[27]
Shihui Li, Jianhua Cheng, Yanhui Chen, Masayoshi Nishiura, and Zhaomin Hou
Angewandte Chemie International Edition, 2011, Volume 50, Number 28, Page 6360
[28]
Shihui Li, Jianhua Cheng, Yanhui Chen, Masayoshi Nishiura, and Zhaomin Hou
Angewandte Chemie, 2011, Volume 123, Number 28, Page 6484
[29]
Lothar Weber, Johannes Halama, Lena Böhling, Anna Chrostowska, Alain Dargelos, Hans-Georg Stammler, and Beate Neumann
European Journal of Inorganic Chemistry, 2011, Volume 2011, Number 20, Page 3091
[30]
Kyoko Nozaki, Yoshitaka Aramaki, Makoto Yamashita, Shau-Hua Ueng, Max Malacria, Emmanuel Lacôte, and Dennis P. Curran
Journal of the American Chemical Society, 2010, Volume 132, Number 33, Page 11449
[31]
Lothar Weber, Daniel Eickhoff, Vanessa Werner, Lena Böhling, Stefanie Schwedler, Anna Chrostowska, Alain Dargelos, Małgorzata Maciejczyk, Hans-Georg Stammler, and Beate Neumann
Dalton Transactions, 2011, Volume 40, Number 17, Page 4434
[32]
Lothar Weber, Johannes Halama, Vanessa Werner, Kenny Hanke, Lena Böhling, Anna Chrostowska, Alain Dargelos, Małgorzata Maciejczyk, Anna-Lena Raza, Hans-Georg Stammler, and Beate Neumann
European Journal of Inorganic Chemistry, 2010, Volume 2010, Number 34, Page 5416
[33]
Chin-Hung Lai and Pi-Tai Chou
Journal of Molecular Modeling, 2010, Volume 16, Number 4, Page 713

Comments (0)

Please log in or register to comment.
Log in