Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 80, Issue 9

Issues

Electron dynamics of low-pressure deposition plasma

Hirotsugu Yasuda
  • Corresponding author
  • Laboratory for Sensors, Department of Microsystems Engineering, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Loic Ledernez
  • Corresponding author
  • Laboratory for Sensors, Department of Microsystems Engineering, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fethi Olcaytug
  • Corresponding author
  • Laboratory for Sensors, Department of Microsystems Engineering, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gerald Urban
  • Corresponding author
  • Laboratory for Sensors, Department of Microsystems Engineering, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-01-01 | DOI: https://doi.org/10.1351/pac200880091883

When the electric field in the dark gas phase reaches the threshold value, an electron avalanche (breakdown) occurs, which causes dissociation of organic molecules, excitation of chemically reactive molecular gas, and/or ionization of atomic gas, depending on the type of gas involved. The principles that govern these electron-impact reactions are collectively described by the term "electron dynamics". The electron-impact dissociation of organic molecules is the key factor for the deposition plasma. The implications of the interfacial avalanche of the primary electrons on the deposition plasma and also other plasma processes are discussed. The system dependency of low-pressure plasma deposition processes is an extremely important factor that should be reckoned, because the electron dynamic reactions are highly dependent on every aspect of the reaction system. The secondary electron emission from the cathode is a misinterpretation of the interfacial electron avalanche of the primary electrons described in this paper.

Keywords: breakdown process; electron dynamics; magnetron plasma polymerization; plasma polymerization; primary-electron emission

Conference

International Symposium on Plasma Chemistry (ISPC-18), International Symposium on Plasma Chemistry, ISPC, Plasma Chemistry, 18th, Kyoto, Japan, 2007-08-26–2007-08-31

References

  • 1.

    B. Chapman. Glow Discharge Processes, John Wiley, New York (1980).Google Scholar

  • 2.

    S. C. Brown. Introduction to Electrical Discharges in Gases, John Wiley, New York (1966).Google Scholar

  • 3.

    H. Yasuda. Luminous Chemical Vapor Deposition & Interface Engineering, Marcel Dekker, New York (2004).Google Scholar

  • 4.

    , H. Yasuda, Q. Yu. Plasma Chem. Plasma Process. 24, 325 (2004).CrossrefGoogle Scholar

  • 5.

    , Q. S. Yu, C. Huang, H. K. Yasuda. J. Polym. Sci., A: Polym. Chem. 42, 1042 (2004).CrossrefGoogle Scholar

  • 6.

    H. Yasuda, Q. Yu. J. Vac. Sci. Technol. A 22, 472 (2004).CrossrefGoogle Scholar

  • 7.

    , H. Yasuda. Plasma Process. Polym. 4, 347 (2007).CrossrefGoogle Scholar

  • 8.

    , H. Yasuda, E. J. Charlson, E. M. Charlson, T. Yasuda, M. Miyama, T. Okuno. Langmuir 7, 2394 (1991).CrossrefGoogle Scholar

  • 9.

    M. A. Hassouba, F. F. Elakshar, A. A. Garamoon. Fizika A 11, 81 (2002).Google Scholar

  • 10.

    Y. Hatta. Gas Discharge, Tohoku University Lecture Series of Introduction to Basic Electronics, 2nd ed., Vol. 4, Kindai Kagaku-Sha, Tokyo (1979).Google Scholar

  • 11.

    H. Yasuda. Plasma Polymerization, Academic Press, Orlando (1985).Google Scholar

  • 12.

    J. L. Vossen, J. J. Cuomo. Thin Film Processes, J. L. Vossen, W. Kern (Eds.), Academic Press, New York (1978).Google Scholar

  • 13.

    K. Wasa, S. Hayakawa. Handbook of Sputter Deposition Technology, Noyes Publications, Westwood, NJ (1992).Google Scholar

  • 14.

    , D. L. Cho, Y. S. Yeh, H. Yasuda. J. Vac. Sci. Technol., A 7, 2960 (1989).CrossrefGoogle Scholar

  • 15.

    , W. H. Tao, M. A. Prelas, H. K. Yasuda. J. Vac. Sci. Technol., A 14, 2113 (1996).CrossrefGoogle Scholar

  • 16.

    , I. Langmuir. Proc. Natl. Acad. Sci. USA 14, 628 (1928).CrossrefGoogle Scholar

  • 17.

    , H. Kobayashi, A. T. Bell, M. Shen. J. Macromol. Sci. Chem. 10, 491 (1976).CrossrefGoogle Scholar

About the article

Published Online: 2009-01-01

Published in Print: 2008-01-01


Citation Information: Pure and Applied Chemistry, Volume 80, Issue 9, Pages 1883–1892, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/pac200880091883.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Mohamed E. Abdel-kader, Walid H. Gaber, Fawzia A. Ebrahim, and Mohamed A. Abd Al-Halim
Vacuum, 2019, Volume 169, Page 108922
[3]
Marianne Vandenbossche, Maria-Isabel Butron Garcia, Urs Schütz, Patrick Rupper, Martin Amberg, and Dirk Hegemann
Plasma Chemistry and Plasma Processing, 2016, Volume 36, Number 2, Page 667
[4]
Dani Zeniieh, Adeel Bajwa, Loic Ledernez, and Gerald Urban
Plasma Processes and Polymers, 2013, Volume 10, Number 12, Page 1081
[5]
Hirotsugu Yasuda, Loic Ledernez, Fethi Olcaytug, Gregory Dame, and Michael Bergmann
Progress in Organic Coatings, 2012, Volume 74, Number 4, Page 667

Comments (0)

Please log in or register to comment.
Log in