Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 81, Issue 1

Issues

Magnetic field effects in chemical systems

Christopher T. Rodgers
  • Corresponding author
  • Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-01-01 | DOI: https://doi.org/10.1351/PAC-CON-08-10-18

Chemical reactions that involve radical intermediates can be influenced by magnetic fields, which act to alter their rate, yield, or product distribution. These effects have been studied extensively in liquids, solids, and constrained media such as micelles. They may be interpreted using the radical pair mechanism (RPM). Such effects are central to the field of spin chemistry of which there have been several detailed and extensive reviews. This review instead presents an introductory account of the field of spin chemistry, suitable for use by graduate students or researchers who are new to the area. It proceeds by giving a brief historical overview of the development of spin chemistry, before introducing the essential theory. This is then illustrated by application to a series of recent developments in solution-phase magnetic field effects (MFEs). The closing pages of this review describe the role played by spin chemistry in the remarkable magnetic compass sense of birds and other animals.

Keywords: CIDEP; CIDNP; EPR; magnetic; magnetic field effect; magnetoreception; optically detected EPR; radical pair; RPM; spin chemistry

References

  • 1

    , U. E. Steiner, T. Ulrich. Chem. Rev.89, 51 (1989).CrossrefGoogle Scholar

  • 2

    H. Hayashi. Introduction to Dynamic Spin Chemistry: Magnetic Field Effects on Chemical and Biochemical Reactions, World Scientific, Singapore (2004).CrossrefGoogle Scholar

  • 3

    , F. Z. Tang, A. Katsuki, Y. Tanimoto. Mol. Phys.104, 1667 (2006).CrossrefGoogle Scholar

  • 4

    , K. Maeda, K. B. Henbest, F. Cintolesi, I. Kuprov, C. T. Rodgers, P. A. Liddell, D. Gust, C. R. Timmel, P. J. Hore. Nature453, 387 (2008).CrossrefGoogle Scholar

  • 5

    H. Hayashi. RIKEN Rev.44, 7 (2002).Google Scholar

  • 6

    , R. C. Johnson, R. E. Merrifield, P. Avakian, R. B. Flippen. Phys. Rev. Lett.19, 285 (1967).CrossrefGoogle Scholar

  • 7

    , R. E. Merrifield. J. Chem. Phys.48, 4318 (1968).CrossrefGoogle Scholar

  • 8

    , B. Brocklehurst. Nature221, 921 (1969).CrossrefGoogle Scholar

  • 9

    B. Brocklehurst. J. Chem. Soc., Faraday Trans.72, 1869 (1976).Google Scholar

  • 10

    , B. Brocklehurst. Faraday Discuss. Chem. Soc.63, 96 (1977).CrossrefGoogle Scholar

  • 11

    , J. Bargon. Helv. Chim. Acta89, 2082 (2006).CrossrefGoogle Scholar

  • 12

    , R. Kaptein, J. L. Oosterhoff. Chem. Phys. Lett.4, 195 (1969).CrossrefGoogle Scholar

  • 13

    , G. L. Closs. J. Am. Chem. Soc.91, 4552 (1969).CrossrefGoogle Scholar

  • 14

    R. G. Lawler, G. T. Evans. Ind. Chim. Belge36, 1087 (1971).Google Scholar

  • 15

    , S. K. Wong, J. K. S. Wan. J. Am. Chem. Soc.94, 7197 (1972).CrossrefGoogle Scholar

  • 16

    , P. W. Atkins, I. C. Buchanan, R. C. Gurd, K. A. McLauchlan, A. F. Simpson. J. Chem. Soc. D: Chem. Commun.9, 513 (1970).CrossrefGoogle Scholar

  • 17

    , J. B. Pedersen, J. H. Freed. J. Chem. Phys.57, 1004 (1972).CrossrefGoogle Scholar

  • 18

    , J. B. Pedersen, J. H. Freed. J. Chem. Phys.58, 2746 (1973).CrossrefGoogle Scholar

  • 19

    , J. B. Pedersen, J. H. Freed. J. Chem. Phys.59, 2869 (1973).CrossrefGoogle Scholar

  • 20

    , J. B. Pedersen, J. H. Freed. J. Chem. Phys.61, 1517 (1974).CrossrefGoogle Scholar

  • 21

    , J. B. Pedersen, J. H. Freed. J. Chem. Phys.62, 1790 (1975).CrossrefGoogle Scholar

  • 22

    , J. B. Pedersen, J. H. Freed. J. Chem. Phys.62, 1706 (1975).CrossrefGoogle Scholar

  • 23

    K. Schulten, H. Staerk, A. Weller, H.-J. Werner, B. Nickel. Z. Phys. Chem.101, 371 (1976).Google Scholar

  • 24

    , Z. Schulten, K. Schulten. J. Chem. Phys.66, 4616 (1977).CrossrefGoogle Scholar

  • 25

    , M. Goez. Concepts Magn. Reson.7, 69 (1995).CrossrefGoogle Scholar

  • 26

    , P. J. Hore, C. G. Joslin, K. A. Mclauchlan. Chem. Soc. Rev.8, 29 (1979).CrossrefGoogle Scholar

  • 27

    E. L. Frankevich, S. I. Kubarev. In Triplet State ODMR Spectroscopy: Techniques and Applications to Biophysical Systems, pp. 137–183, Wiley-Interscience, New York (1982).Google Scholar

  • 28

    J. R. Woodward. Prog. React. Kinet. Mech.27, 165 (2002).CrossrefGoogle Scholar

  • 29

    , C. B. Grissom. Chem. Rev.95, 3 (1995).CrossrefGoogle Scholar

  • 30

    , B. Brocklehurst. Chem. Soc. Rev.31, 301 (2002).CrossrefGoogle Scholar

  • 31

    , H. Murai. J. Photochem. Photobiol., C3, 183 (2003).CrossrefGoogle Scholar

  • 32

    C. R. Timmel, K. B. Henbest. Philos. Trans. R. Soc. London, Ser. A362, 2573 (2004).Google Scholar

  • 33

    A. L. Buchachenko, E. L. Frankevich. Chemical Generation and Reception of Radio- and Microwaves, VCH, Weinheim (1994).Google Scholar

  • 34

    S. Nagakura, H. Hayashi, T. Azumi. Dynamic Spin Chemistry: Magnetic Controls and Spin Dynamics of Chemical Reactions, John Wiley, New York (1998).Google Scholar

  • 35

    K. M. Salikhov, Y. N. Molin, R. Z. Sagdeev, A. L. Buchachenko. Spin Polarization and Magnetic Effects in Radical Reactions, Elsevier, Amsterdam (1984).Google Scholar

  • 36

    C. T. Rodgers, P. J. Hore. Proc. Natl. Acad. Sci. USA (2009). In press.Google Scholar

  • 37

    , K. A. McLauchlan, U. E. Steiner. Mol. Phys.73, 241 (1991).CrossrefGoogle Scholar

  • 38

    , M. H. L. Pryce. Proc. Phys. Soc. A63, 25 (1950).CrossrefGoogle Scholar

  • 39

    A. Abragam, M. H. L. Pryce. Proc. R. Soc. London, Ser. A205, 135 (1951).Google Scholar

  • 40

    M. H. Levitt. Spin Dynamics: Basics of Nuclear Magnetic Resonance, John Wiley, New York (2001).Google Scholar

  • 41

    P. W. Atkins, R. S. Friedman. Molecular Quantum Mechanics, Oxford Unversity Press, Oxford (1997).Google Scholar

  • 42

    N. M. Atherton. Electron Spin Resonance, Ellis Horwood, Chichester (1973).Google Scholar

  • 43

    , F. Neese. J. Chem. Phys.115, 11080 (2001).CrossrefGoogle Scholar

  • 44

    , R. Improta, V. Barone. Chem. Rev.104, 1231 (2004).CrossrefGoogle Scholar

  • 45

    , N. Rega, M. Cossi, V. Barone. J. Chem. Phys.105, 11060 (1996).CrossrefGoogle Scholar

  • 46

    F. Illas, I. D. R. Moreira, C. de Graaf, V. Barone. Theor. Chem. Acc.104, 265 (2000).CrossrefGoogle Scholar

  • 47

    , C. C. Moser, J. M. Keske, K. Warncke, R. S. Farid, P. L. Dutton. Nature355, 796 (1992).CrossrefGoogle Scholar

  • 48

    , J. Abe, T. Sano, M. Kawano, Y. Ohashi, M. M. Matsushita, T. Iyoda. Angew. Chem.113, 600 (2001).CrossrefGoogle Scholar

  • 49

    , L. E. Sinks, E. A. Weiss, J. M. Giaimo, M. R. Wasielewski. Chem. Phys. Lett.404, 244 (2005).CrossrefGoogle Scholar

  • 50

    R. R. Ernst, G. Bodenhausen, A. Wokaun. Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford University Press, Oxford (1988).Google Scholar

  • 51

    A. R. O’Dea, A. F. Curtis, N. J. B. Green, C. R. Timmel, P. J. Hore. J. Phys. Chem. A109, 86973 (2005).Google Scholar

  • 52

    , O. Efimova, P. J. Hore. Biophys. J.94, 1565 (2008).CrossrefGoogle Scholar

  • 53

    , C. T. Rodgers, S. A. Norman, K. B. Henbest, C. R. Timmel, P. J. Hore. J. Am. Chem. Soc.129, 6746 (2007).CrossrefGoogle Scholar

  • 54

    , W. Lersch, M. E. Michel-Beyerle. Chem. Phys.78, 115 (1983).CrossrefGoogle Scholar

  • 55

    , J. R. Woodward, R. J. Jackson, C. R. Timmel, P. J. Hore, K. A. McLauchlan. Chem. Phys. Lett.272, 376 (1997).CrossrefGoogle Scholar

  • 56

    , D. V. Stass, J. R. Woodward, C. R. Timmel, P. J. Hore, K. A. McLauchlan. Chem. Phys. Lett.329, 15 (2000).CrossrefGoogle Scholar

  • 57

    , C. R. Timmel, P. J. Hore. Chem. Phys. Lett.257, 401 (1996).CrossrefGoogle Scholar

  • 58

    , A. D. Trifunac, J. P. Smith. Chem. Phys. Lett.73, 94 (1980).CrossrefGoogle Scholar

  • 59

    , V. A. Morozov, O. N. Antzutkin, A. V. Koptyug, A. B. Doktorov. Mol. Phys.73, 517 (1991).CrossrefGoogle Scholar

  • 60

    , V. A. Morozov, A. B. Doktorov. Chem. Phys.153, 313 (1991).CrossrefGoogle Scholar

  • 61

    , V. A. Morozov, A. B. Doktorov. Chem. Phys.153, 333 (1991).CrossrefGoogle Scholar

  • 62

    , F. B. Sviridenko, D. V. Stass, T. V. Kobzeva, E. V. Tretyakov, S. V. Klyatskaya, E. V. Mshvidobadze, S. F. Vasilevsky, Y. N. Molin. J. Am. Chem. Soc.126, 2807 (2004).CrossrefGoogle Scholar

  • 63

    , C. T. Rodgers, K. B. Henbest, P. Kukura, C. R. Timmel, P. J. Hore. J. Phys. Chem. A109, 5035 (2005).CrossrefGoogle Scholar

  • 64

    , C. R. Timmel, U. Till, B. Brocklehurst, K. A. McLauchlan, P. J. Hore. Mol. Phys.95, 71 (1998).CrossrefGoogle Scholar

  • 65

    M. Liedvogel, K. Maeda, K. Henbest, E. Schleicher, T. Simon, C. R. Timmel, P. J. Hore, H. Mouritsen. PLoS ONE2 (2007).Google Scholar

  • 66

    , E. V. Kalneus, A. A. Kipriyanov, P. A. Purtov, D. V. Stass, Y. N. Molin. Dokl. Phys. Chem.415, 170 (2007).CrossrefGoogle Scholar

  • 67

    H. Murai, S. Tero-Kubota, S. Yamauchi. In Electron Paramagnetic Resonance, Vol. 17, pp. 130–163, The Royal Society of Chemistry, Cambridge (2000).Google Scholar

  • 68

    , S. R. Shakirov, T. N. Makarov, E. G. Bagryanskaya, R. Z. Sagdeev. Phys. Chem. Chem. Phys.3, 3672 (2001).CrossrefGoogle Scholar

  • 69

    , T. N. Makarov, E. G. Bagryanskaya, S. R. Shakirov, N. N. Lukzen, R. Z. Sagdeev. Chem. Phys. Lett.317, 252 (2000).CrossrefGoogle Scholar

  • 70

    R. M. Noyes. J. Chem. Phys.22, 1349 (1954).Google Scholar

  • 71

    , F. J. Adrian. J. Chem. Phys.53, 3374 (1970).CrossrefGoogle Scholar

  • 72

    , F. J. Adrian. J. Chem. Phys.54, 3912 (1971).CrossrefGoogle Scholar

  • 73

    , F. J. Adrian. J. Chem. Phys.54, 3918 (1971).CrossrefGoogle Scholar

  • 74

    F. J. Adrian. In Chemically Induced Magnetic Polarisation: Proceedings of the NATO Advanced Study Institute held at Sogesta, Urbino, Italy, pp. 77–105, D. Reidel, Dordrecht (1977).Google Scholar

  • 75

    J. B. Pedersen. In Spin Chemistry: Spin Polarization and Magnetic Field Effects in Photochemical Reactions, pp. 71–89, The Oji International Conference on Spin Chemistry (1991).Google Scholar

  • 76

    , B. Brocklehurst, K. A. McLauchlan. Int. J. Radiat. Biol.69, 3 (1996).CrossrefGoogle Scholar

  • 77

    , S. D. Choudhury, S. Basu. J. Phys. Chem. A109, 8113 (2005).CrossrefGoogle Scholar

  • 78

    , A. A. Neufeld, M. J. Hansen, J. B. Pedersen. Chem. Phys.278, 129 (2002).CrossrefGoogle Scholar

  • 79

    , T. Miura, H. Murai. J. Phys. Chem. A112, 2526 (2008).CrossrefGoogle Scholar

  • 80

    , K. Maeda, T. Miura, T. Arai. Mol. Phys.104, 1779 (2006).CrossrefGoogle Scholar

  • 81

    , N. N. Lukzen, K. L. Ivanov, V. A. Morozov, R. Z. Sagdeev, D. Kattnig, G. Grampp. Dokl. Phys. Chem.409, 233 (2006).CrossrefGoogle Scholar

  • 82

    , M. J. Hansen, A. A. Neufeld, J. B. Pedersen. Chem. Phys.260, 125 (2000).CrossrefGoogle Scholar

  • 83

    , A. B. Doktorov, J. B. Pedersen. Chem. Phys.322, 433 (2006).CrossrefGoogle Scholar

  • 84

    , R. Kubo. J. Math. Phys.4, 174 (1963).CrossrefGoogle Scholar

  • 85

    D. Gamliel, H. Levanon. Stochastic Processes in Magnetic Resonance, World Scientific, Singapore (1995).Google Scholar

  • 86

    , K. Schulten, P. G. Wolynes. J. Chem. Phys.68, 3292 (1978).CrossrefGoogle Scholar

  • 87

    , E. W. Knapp, K. Schulten. J. Chem. Phys.71, 1878 (1979).CrossrefGoogle Scholar

  • 88

    C. T. Rodgers. “Magnetic field effects in chemical systems”, DPhil thesis, University of Oxford (2007).Google Scholar

  • 89

    , D. V. Stass, N. N. Lukzen, B. M. Tadjikov, Y. N. Molin. Chem. Phys. Lett.233, 444 (1995).CrossrefGoogle Scholar

  • 90

    , R. J. Jackson, K. A. McLauchlan, J. R. Woodward. Chem. Phys. Lett.236, 395 (1995).CrossrefGoogle Scholar

  • 91

    S. A. Norman. “Magnetic field effects on radical pair reactions”, DPhil thesis, University of Oxford (2006).Google Scholar

  • 92

    , K. B. Henbest, P. Kukura, C. T. Rodgers, P. J. Hore, C. R. Timmel. J. Am. Chem. Soc.126, 8102 (2004).CrossrefGoogle Scholar

  • 93

    C. J. Wedge. “Magnetic field effects on radical recombination reactions”, MChem thesis, University of Oxford (2005).Google Scholar

  • 94

    , M. Hohwy, H. Bildsoe, H. J. Jakobsen, N. C. Nielsen. J. Magn. Reson.136, 6 (1999).CrossrefGoogle Scholar

  • 95

    T. Ritz, P. J. Hore, C. R. Timmel, C. T. Rodgers, K. Stapput, P. Thalau, R. Wiltschko, W. Wiltschko. Biophys. J. (2009). In press.Google Scholar

  • 96

    R. Doll. National Radiological Protection Board (2001).Google Scholar

  • 97

    , M. Havas. Environ. Rev.8, 173 (2000).CrossrefGoogle Scholar

  • 98

    , UK Childhood Cancer Study Investigators. Lancet354, 1925 (1999).CrossrefGoogle Scholar

  • 99

    S. W. Stewart. Independent Expert Group on Mobile Phones (2000).Google Scholar

  • 100

    K. McLauchlan. Phys. World 41 (1992).Google Scholar

  • 101

    , I. A. Solov’yov, D. E. Chandler, K. Schulten. Biophys. J.92, 2711 (2007).CrossrefGoogle Scholar

  • 102

    , S. Johnsen, K. J. Lohmann. Phys. Today61, 29 (2008).CrossrefGoogle Scholar

  • 103

    , M. Volk, G. Aumeier, T. Langenbacher, R. Feick, A. Ogrodnik, M.-E. Michel-Beyerle. J. Phys. Chem. B102, 735 (1998).CrossrefGoogle Scholar

  • 104

    , C. E. D. Chidsey, L. Takiff, R. A. Goldstein, S. G. Boxer. Proc. Natl. Acad. Sci. USA82, 6850 (1985).CrossrefGoogle Scholar

  • 105

    , Y. Liu, R. Edge, K. Henbest, C. R. Timmel, P. J. Hore, P. Gast. Chem. Commun.2, 174 (2005).CrossrefGoogle Scholar

  • 106

    , A. J. Hoff, J. Deisenhofer. Phys. Rep.287, 2 (1997).CrossrefGoogle Scholar

  • 107

    , K. B. Henbest, K. Maeda, P. J. Hore, M. Joshi, A. Bacher, R. Bittl, S. Weber, C. R. Timmel, E. Schleicher. Proc. Natl. Acad. Sci. USA105, 14395 (2008).CrossrefGoogle Scholar

  • 108

    , M. B. Taraban, T. V. Leshina, M. A. Anderson, C. B. Grissom. J. Am. Chem. Soc.119, 5768 (1997).CrossrefGoogle Scholar

  • 109

    , A. R. Jones, S. Hay, J. R. Woodward, N. S. Scrutton. J. Am. Chem. Soc.129, 15718 (2007).CrossrefGoogle Scholar

  • 110

    , M. S. Afanasyeva, M. B. Taraban, P. A. Purtov, T. V. Leshina, C. B. Grissom. J. Am. Chem. Soc.128, 8651 (2006).CrossrefGoogle Scholar

  • 111

    , A. R. Jones, N. S. Scrutton, J. R. Woodward. J. Am. Chem. Soc.128, 8408 (2006).CrossrefGoogle Scholar

  • 112

    , A. L. Buchachenko, D. A. Kouznetsov, M. A. Orlova, A. A. Markarian. Proc. Natl. Acad. Sci. USA102, 10793 (2005).CrossrefGoogle Scholar

  • 113

    , A. L. Buchachenko, D. A. Kouznetsov, N. N. Breslavskaya, M. A. Orlova. J. Phys. Chem. B112, 2548 (2008).CrossrefGoogle Scholar

  • 114

    , S. Johnsen, K. J. Lohmann. Nat. Rev. Neurosci.6, 703 (2005).CrossrefGoogle Scholar

  • 115

    R. Wiltschko, W. Wiltschko. Magnetic Orientation in Animals, Springer, Berlin (1995).CrossrefGoogle Scholar

  • 116

    , T. Ritz, S. Adem, K. Schulten. Biophys. J.78, 707 (2000).CrossrefGoogle Scholar

  • 117

    , A. Sancar. Chem. Rev.103, 2203 (2003).CrossrefGoogle Scholar

  • 118

    , C. L. Partch, A. Sancar. Photochem. Photobiol.81, 1291 (2005).CrossrefGoogle Scholar

  • 119

    S. Weber. Biochim. Biophys. Acta1707, 1 (2005).Google Scholar

About the article

Published Online: 2009-01-01

Published in Print: 2009-01-01


Citation Information: Pure and Applied Chemistry, Volume 81, Issue 1, Pages 19–43, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-08-10-18.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hong Bo Tang and Min Qing Zhang
Advanced Materials Research, 2012, Volume 550-553, Page 2704
[2]
Julian Schäfer, Marco Holzapfel, Alexander Schmiedel, Ulrich E. Steiner, and Christoph Lambert
Physical Chemistry Chemical Physics, 2018
[3]
Marootpong Pooam, Louis-David Arthaut, Derek Burdick, Justin Link, Carlos F. Martino, and Margaret Ahmad
Planta, 2018
[5]
Haiping Pan, Mingkui Wang, Yan Shen, and Bin Hu
The Journal of Physical Chemistry C, 2018
[6]
Thomas P. Fay, Lachlan P. Lindoy, and David E. Manolopoulos
The Journal of Chemical Physics, 2018, Volume 149, Number 6, Page 064107
[7]
Tarana Mammadova, Mutallim Abbasov, Nahid Movsumov, Tarana Latifova, Aynur Hasanova, Zumrud Kocharli, İrada Khalafova, and Vaqif Abbasov
Egyptian Journal of Petroleum, 2018
[8]
Lachlan P. Lindoy and David E. Manolopoulos
Physical Review Letters, 2018, Volume 120, Number 22
[9]
Gui-huan Yao, Ke-ting Gui, and Xiang Ling
The Canadian Journal of Chemical Engineering, 2018
[10]
Ahne Myklatun, Antonella Lauri, Stephan H. K. Eder, Michele Cappetta, Denis Shcherbakov, Wolfgang Wurst, Michael Winklhofer, and Gil G. Westmeyer
Nature Communications, 2018, Volume 9, Number 1
[11]
Jasna L. Ristic-Djurovic, Slavica S. Gajic, Andjelija Z. Ilic, Nebojsa Romcevic, Drago M. Djordjevich, Silvio R. De Luka, Alexander M. Trbovich, Vesna Spasic Jokic, and Sasa Cirkovic
IEEE Transactions on Industrial Electronics, 2018, Volume 65, Number 6, Page 4991
[12]
Hideya Yuasa and Shinichi Kuno
Bulletin of the Chemical Society of Japan, 2018, Volume 91, Number 2, Page 223
[13]
Haiping Pan, Xin Xiao, Bin Hu, Yan Shen, and Mingkui Wang
The Journal of Physical Chemistry C, 2017
[16]
Juan José Godina-Nava, Gabino Torres-Vega, Germán Octavio López-Riquelme, Eduardo López-Sandoval, Arturo Rodolfo Samana, Fermín García Velasco, Claudia Hernández-Aguilar, and Arturo Domínguez-Pacheco
Physical Review E, 2017, Volume 95, Number 2
[18]
Anatoly Buchachenko and Ronald G. Lawler
Accounts of Chemical Research, 2017, Volume 50, Number 4, Page 877
[19]
Yuri I. Golovin, Natalia L. Klyachko, Alexander G. Majouga, Marina Sokolsky, and Alexander V. Kabanov
Journal of Nanoparticle Research, 2017, Volume 19, Number 2
[20]
Tatjana Tasić, Drago M. Djordjević, Silvio R. De Luka, Alexander M. Trbovich, and Nina Japundžić-Žigon
International Journal of Radiation Biology, 2017, Volume 93, Number 5, Page 527
[21]
Shinichi Kuno, Takashi Kanamori, Zhao Yijing, Hiroyuki Ohtani, and Hideya Yuasa
ChemPhotoChem, 2017, Volume 1, Number 3, Page 102
[22]
Adelfia Talà, Domenico Delle Side, Giovanni Buccolieri, Salvatore Maurizio Tredici, Luciano Velardi, Fabio Paladini, Mario De Stefano, Vincenzo Nassisi, Pietro Alifano, and Dongsheng Zhou
PLoS ONE, 2014, Volume 9, Number 6, Page e100825
[23]
Alan M. Lewis, Thomas P. Fay, and David E. Manolopoulos
The Journal of Chemical Physics, 2016, Volume 145, Number 24, Page 244101
[24]
Tomoaki Yago, Kei Ishikawa, Ryuzi Katoh, and Masanobu Wakasa
The Journal of Physical Chemistry C, 2016, Volume 120, Number 49, Page 27858
[25]
J. Boiden Pedersen, Claus Nielsen, and Ilia A. Solov’yov
Scientific Reports, 2016, Volume 6, Number 1
[26]
Maria Procopio and Thorsten Ritz
Scientific Reports, 2016, Volume 6, Number 1
[28]
Oleksiy V. Khavryuchenko and Gilles H. Peslherbe
ChemCatChem, 2016, Volume 8, Number 19, Page 3156
[29]
Emrys W. Evans, Daniel R. Kattnig, Kevin B. Henbest, P. J. Hore, Stuart R. Mackenzie, and Christiane R. Timmel
The Journal of Chemical Physics, 2016, Volume 145, Number 8, Page 085101
[30]
P. J. Hore and Henrik Mouritsen
Annual Review of Biophysics, 2016, Volume 45, Number 1, Page 299
[31]
Daniel R Kattnig, Jakub K Sowa, Ilia A Solov'yov, and P J Hore
New Journal of Physics, 2016, Volume 18, Number 6, Page 063007
[32]
D. Delle Side, V. Specchia, S. D'Attis, E. Giuffreda, G. Quarta, L. Calcagnile, M.P. Bozzetti, and V. Nassisi
Journal of Instrumentation, 2016, Volume 11, Number 05, Page C05007
[33]
Chuanjun Ge, Xiang Zhang, Jian Liu, Feng Jin, Jichang Liu, and Hong Bi
Applied Surface Science, 2016, Volume 378, Page 49
[34]
Boris Minaev, Alina Baryshnikova, and Wen-Hua Sun
Journal of Organometallic Chemistry, 2016, Volume 811, Page 48
[35]
A. Chia, K. C. Tan, Ł. Pawela, P. Kurzyński, T. Paterek, and D. Kaszlikowski
Physical Review E, 2016, Volume 93, Number 3
[36]
Silvio R. De Luka, Andjelija Ž. Ilić, Saša Janković, Drago M. Djordjevich, Saša Ćirković, Ivan D. Milovanovich, Srdjan Stefanović, Slavica Vesković-Moračanin, Jasna L. Ristić-Djurović, and Alexander M. Trbovich
International Journal of Radiation Biology, 2016, Volume 92, Number 3, Page 140
[37]
Iannis K. Kominis
Modern Physics Letters B, 2015, Volume 29, Number Supplement 1, Page 1530013
[39]
Anatoly Buchachenko
Bioelectromagnetics, 2016, Volume 37, Number 1, Page 1
[40]
Eric Hontz, Wendi Chang, Daniel N. Congreve, Vladimir Bulović, Marc A. Baldo, and Troy Van Voorhis
The Journal of Physical Chemistry C, 2015, Volume 119, Number 45, Page 25591
[41]
Masanobu Wakasa, Mana Kaise, Tomoaki Yago, Ryuzi Katoh, Yusuke Wakikawa, and Tadaaki Ikoma
The Journal of Physical Chemistry C, 2015, Volume 119, Number 46, Page 25840
[43]
Oleksiy V. Khavryuchenko, Volodymyr D. Khavryuchenko, and Dangsheng Su
Chinese Journal of Catalysis, 2015, Volume 36, Number 10, Page 1656
[44]
Tomoaki Yago, Ayuto Takashino, and Masanobu Wakasa
The Journal of Physical Chemistry C, 2015, Volume 119, Number 34, Page 20217
[45]
Joshua P. Beardmore, Lewis M. Antill, and Jonathan R. Woodward
Angewandte Chemie, 2015, Volume 127, Number 29, Page 8614
[46]
Joshua P. Beardmore, Lewis M. Antill, and Jonathan R. Woodward
Angewandte Chemie International Edition, 2015, Volume 54, Number 29, Page 8494
[47]
Vishvendra Singh Poonia, Dipankar Saha, and Swaroop Ganguly
Physical Review E, 2015, Volume 91, Number 5
[48]
Tomoaki Miura and Hisao Murai
The Journal of Physical Chemistry A, 2015, Volume 119, Number 22, Page 5534
[49]
C. A. Dodson, C. J. Wedge, M. Murakami, K. Maeda, M. I. Wallace, and P. J. Hore
Chem. Commun., 2015, Volume 51, Number 38, Page 8023
[50]
Haiping Pan, Yan Shen, Lin Luan, Kai Lu, Jiashun Duan, and Bin Hu
The Journal of Physical Chemistry C, 2015, Volume 119, Number 15, Page 8089
[51]
[52]
Haiping Pan, Yan Shen, Hongfeng Wang, Lei He, and Bin Hu
Scientific Reports, 2015, Volume 5, Number 1
[53]
Satoru Yamamoto, Shigeaki Nakazawa, Kenji Sugisaki, Kazunobu Sato, Kazuo Toyota, Daisuke Shiomi, and Takeji Takui
Phys. Chem. Chem. Phys., 2015, Volume 17, Number 4, Page 2742
[54]
Lin Hu, Ruirui Zhang, and Qianwang Chen
Nanoscale, 2014, Volume 6, Number 23, Page 14064
[55]
Thorsten Ritz, Taishi Yoshii, Charlotte Foerster, and Margaret Ahmad
Communicative & Integrative Biology, 2010, Volume 3, Number 1, Page 24
[56]
Tomoaki Yago, Yuya Ishii, and Masanobu Wakasa
The Journal of Physical Chemistry C, 2014, Volume 118, Number 38, Page 22356
[57]
Alan M. Lewis, David E. Manolopoulos, and P. J. Hore
The Journal of Chemical Physics, 2014, Volume 141, Number 4, Page 044111
[58]
Marko Melander, Kari Laasonen, and Hannes Jónsson
The Journal of Physical Chemistry C, 2014, Volume 118, Number 29, Page 15863
[59]
Eric Breynaert, Jens Emmerich, Danilo Mustafa, Sneha R. Bajpe, Thomas Altantzis, Kristof Van Havenbergh, Francis Taulelle, Sara Bals, Gustaaf Van Tendeloo, Christine E. A. Kirschhock, and Johan A. Martens
Advanced Materials, 2014, Volume 26, Number 30, Page 5173
[60]
Bert M. Pilles, Dominik B. Bucher, Lizhe Liu, Pascale Clivio, Peter Gilch, Wolfgang Zinth, and Wolfgang J. Schreier
The Journal of Physical Chemistry Letters, 2014, Volume 5, Number 9, Page 1616
[61]
Jian Zhang, Chong Ding, Li Ren, Yimin Zhou, and Peng Shang
Progress in Biophysics and Molecular Biology, 2014, Volume 114, Number 3, Page 146
[62]
Ilia A. Solov'yov, Tatiana Domratcheva, and Klaus Schulten
Scientific Reports, 2015, Volume 4, Number 1
[63]
Kiminori Maeda, Paul Liddell, Devens Gust, and P. J. Hore
The Journal of Chemical Physics, 2013, Volume 139, Number 23, Page 234309
[64]
Yeung Bae Jin, Seo-Hyun Choi, Jae Seon Lee, Jae-Kyung Kim, Ju-Woon Lee, Seung-Cheol Hong, Sung Ho Myung, and Yun-Sil Lee
Radiation and Environmental Biophysics, 2014, Volume 53, Number 1, Page 93
[65]
Tamara Basova, Aleksei Berezin, Vladimir Nadolinny, Heiko Peisert, Thomas Chassé, Hikmat Banimuslem, and Aseel Hassan
The Journal of Chemical Physics, 2013, Volume 139, Number 20, Page 204710
[66]
Dmytro Neshchadin, Arnulf Rosspeintner, Markus Griesser, Bernhard Lang, Sandra Mosquera-Vazquez, Eric Vauthey, Vitaly Gorelik, Robert Liska, Christian Hametner, Beate Ganster, Robert Saf, Norbert Moszner, and Georg Gescheidt
Journal of the American Chemical Society, 2013, Volume 135, Number 46, Page 17314
[67]
D. E. Manolopoulos and P. J. Hore
The Journal of Chemical Physics, 2013, Volume 139, Number 12, Page 124106
[68]
Laura Zanetti-Polzi, Paolo Marracino, Massimiliano Aschi, Isabella Daidone, Antonella Fontana, Francesca Apollonio, Micaela Liberti, Guglielmo D’Inzeo, and Andrea Amadei
Theoretical Chemistry Accounts, 2013, Volume 132, Number 11
[69]
C. J. Wedge, Jason C. S. Lau, Kelly-Anne Ferguson, Stuart A. Norman, P. J. Hore, and Christiane R. Timmel
Physical Chemistry Chemical Physics, 2013, Volume 15, Number 38, Page 16043
[70]
Charlotte A. Dodson, P.J. Hore, and Mark I. Wallace
Trends in Biochemical Sciences, 2013, Volume 38, Number 9, Page 435
[71]
James A. Pauls, Yiteng Zhang, Gennady P. Berman, and Sabre Kais
Physical Review E, 2013, Volume 87, Number 6
[72]
Milena Villarini, Maria Vittoria Ambrosini, Massimo Moretti, Luca Dominici, Elena Taha, Danilo Piobbico, Cristiana Gambelunghe, and Giuseppina Mariucci
International Journal of Radiation Biology, 2013, Volume 89, Number 7, Page 562
[73]
J. C. S. Lau, C. T. Rodgers, and P. J. Hore
Journal of The Royal Society Interface, 2012, Volume 9, Number 77, Page 3329
[74]
R. Naaman and David H. Waldeck
The Journal of Physical Chemistry Letters, 2012, Volume 3, Number 16, Page 2178
[75]
Igor V. Khudyakov
Research on Chemical Intermediates, 2013, Volume 39, Number 3, Page 781
[76]
I.K. Kominis
Chemical Physics Letters, 2012, Volume 542, Page 143
[77]
János F. László, Péter Farkas, Jenő Reiczigel, and Péter Vágó
International Journal of Radiation Biology, 2012, Volume 88, Number 5, Page 430
[78]
K. Maeda, A. J. Robinson, K. B. Henbest, H. J. Hogben, T. Biskup, M. Ahmad, E. Schleicher, S. Weber, C. R. Timmel, and P. J. Hore
Proceedings of the National Academy of Sciences, 2012, Volume 109, Number 13, Page 4774
[79]
Tomoyasu Mani, Dariusz M. Niedzwiedzki, and Sergei A. Vinogradov
The Journal of Physical Chemistry A, 2012, Volume 116, Number 14, Page 3598
[80]
Henrik Mouritsen and PJ Hore
Current Opinion in Neurobiology, 2012, Volume 22, Number 2, Page 343
[81]
P. J. Hore
Proceedings of the National Academy of Sciences, 2012, Volume 109, Number 5, Page 1357
[82]
C. Y. Cai, Qing Ai, H. T. Quan, and C. P. Sun
Physical Review A, 2012, Volume 85, Number 2
[83]
J.A. Jones and P.J. Hore
Chemical Physics Letters, 2010, Volume 488, Number 1-3, Page 90
[84]
Hannah J. Hogben, Olga Efimova, Nicola Wagner-Rundell, Christiane R. Timmel, and P.J. Hore
Chemical Physics Letters, 2009, Volume 480, Number 1-3, Page 118
[85]
J.A. Jones, Kiminori Maeda, and P.J. Hore
Chemical Physics Letters, 2011, Volume 507, Number 4-6, Page 269
[86]
Kiminori Maeda, Christopher J. Wedge, Jonathan G. Storey, Kevin B. Henbest, Paul A. Liddell, Gerdenis Kodis, Devens Gust, P. J. Hore, and Christiane R. Timmel
Chemical Communications, 2011, Volume 47, Number 23, Page 6563
[87]
Yuri E. Kandrashkin and Art van der Est
Applied Magnetic Resonance, 2011, Volume 40, Number 2, Page 189
[88]
Erik M. Gauger, Elisabeth Rieper, John J. L. Morton, Simon C. Benjamin, and Vlatko Vedral
Physical Review Letters, 2011, Volume 106, Number 4
[89]
H. J. Hogben, P. J. Hore, and Ilya Kuprov
The Journal of Chemical Physics, 2010, Volume 132, Number 17, Page 174101
[90]
J. C. S. Lau, N. Wagner-Rundell, C. T. Rodgers, N. J. B. Green, and P. J. Hore
Journal of The Royal Society Interface, 2010, Volume 7, Number Suppl_2, Page S257
[91]
Ilya Kuprov and Christopher T. Rodgers
The Journal of Chemical Physics, 2009, Volume 131, Number 23, Page 234108
[92]
C. J. Wedge, Christopher T. Rodgers, Stuart A. Norman, Neville Baker, Kiminori Maeda, Kevin B. Henbest, C. R. Timmel, and P. J. Hore
Physical Chemistry Chemical Physics, 2009, Volume 11, Number 31, Page 6573

Comments (0)

Please log in or register to comment.
Log in