Skip to content
Publicly Available Published by De Gruyter October 29, 2009

Carbon dioxide chemistry: Examples and challenges in chemical utilization of carbon dioxide

  • Liang-Nian He , Jin-Quan Wang and Jing-Lun Wang

The development of catalytic methods for chemical transformation of CO2 into useful compounds is of paramount importance from a standpoint of C1 chemistry and so-called green chemistry. The kinetic and thermodynamic stability of CO2 molecule presents significant challenges in designing efficient chemical transformations based on this potential feedstock. In this context, efforts to convert CO2 to useful chemicals will inevitably rely on its activation through molecular catalysts, particularly transition-metal catalysts. Two preparative processes employing solid catalyst or CO2-philic homogeneous catalyst were devised for environmentally benign synthesis of organic carbonates and oxazolidinones under solvent-free conditions. Those processes represent pathways for greener chemical fixations of CO2 to afford industrial useful materials such as organic carbonates and oxazolidinones with great potential applications.


Conference

International Conference on Green Chemistry (ICGC-2), IUPAC International Conference on Green Chemistry, ICGC, Green Chemistry , 2nd, Moscow, Russia, 2008-09-14–2008-09-20


References

1a 10.1021/cr0206263, G. Parkin. Chem. Rev.104, 699 (2004).Search in Google Scholar

1b 10.1016/0010-8545(95)01232-X, D. J. Darensbourg, M. W. Holtcamp. Coord. Chem. Rev.153, 155 (1996).Search in Google Scholar

1c 10.1002/anie.199522071, W. Leitner. Angew. Chem., Int. Ed. Engl.34, 2207 (1995).Search in Google Scholar

1d M. Aresta, E. Quaranta. CHEMTECH 32 (1997).Search in Google Scholar

1e 10.1016/j.jcat.2005.04.030, H. Yasuda, L.-N. He, T. Sakakura. J. Catal.233, 119 (2005).Search in Google Scholar

2a 10.1021/cr068357u, T. Sakakura, J.-C. Choi, H. Yasuda. Chem. Rev.107, 2365 (2007).Search in Google Scholar

2b 10.1039/b700658f, M. Aresta, A. Dibenedetto. Dalton Trans. 2975 (2007).Search in Google Scholar

2c 10.1021/cr068363q, D. J. Darensbourg. Chem. Rev.107, 2388 (2007).Search in Google Scholar

2d 10.1016/0010-8545(95)01226-5, W. Leitner. Coord. Chem. Rev.153, 257 (1996).Search in Google Scholar

2e X. L. Xin, J. R. Moss. Coord. Chem. Rev.181, 27 (1999).Search in Google Scholar

2f 10.1021/cr940212c, D. H. Gibson. Chem. Rev.96, 2063 (1996).Search in Google Scholar PubMed

3a 10.1021/ar010070q, W. Leitner. Acc. Chem. Res.35, 746 (2002).Search in Google Scholar PubMed

3b 10.1021/cr950067i, A. G. Shaikh, S. Sivaram. Chem. Rev.96, 951 (1996).Search in Google Scholar PubMed

3c 10.1021/ie020678i, J. H. Clements. Ind. Eng. Chem. Res.42, 663 (2003).Search in Google Scholar

3d 10.1021/ie50581a030, W. J. Peppel. Ind. Eng. Chem.50, 767 (1958).Search in Google Scholar

4a 10.1021/ef9600974, M. A. Pacheco, C. L. Marshall. Energy Fuels11, 2 (1991).Search in Google Scholar

4b 10.1021/ar010076f, P. Tundo, M. Selva. Acc. Chem. Res.35, 706 (2002).Search in Google Scholar PubMed

5 10.1021/cr030110z, T. M. Makhtar, G. D. Wright. Chem. Rev.105, 529 (2005).Search in Google Scholar PubMed

6a 10.1021/cr010343v, D. E. Bergbreiter. Chem. Rev.102, 3345 (2002).Search in Google Scholar PubMed

6b 10.1126/science.1081881, D. J. Cole-Hamilton. Science299, 1702 (2003).Search in Google Scholar PubMed

7 10.1002/cssc.200700133, C.-X. Miao, J.-Q. Wang, Y. Wu, Y. Du, L.-N. He. ChemSusChem1, 236 (2008).Search in Google Scholar PubMed

8 X.-Y. Dou, J.-Q. Wang, Y. Du, E. Wang, L.-N. He. Synlett19, 3058 (2007).10.1055/s-2007-992362Search in Google Scholar

9a 10.1016/j.molcata.2006.05.004, J. Sun, L. Wang, S. J. Zhang, Z. X. Li, X. P. Zhang, W. B. Dai, R. Mori. J. Mol. Catal. A: Chem.256, 295 (2006).Search in Google Scholar

9b 10.1021/jp0481097, T. Guadagno, S. G. Kazarian. J. Phys. Chem. B108, 13995 (2004).Search in Google Scholar

9c P. Jessop, D. C. Wyne, S. DeHaai, D. Nakawatase. Chem. Commun. 639 (2000).Search in Google Scholar

10a 10.1021/ja029131l, D. J. Heldebrant, P. G. Jessop. J. Am. Chem. Soc.125, 5600 (2003).Search in Google Scholar

10b 10.1039/b606130c, A. M. Scurto, W. Leitner. Chem. Commun. 3681 (2006).Search in Google Scholar

10c J. Chen, S. K. Spear, J. G. Huddleston, R. D. Rogers. Green Chem.7, 64 (2005).Search in Google Scholar

11a 10.1039/b614259a, J.-S. Tian, C.-X. Miao, J.-Q. Wang, F. Cai, Y. Du, Y. Zhao, L.-N. He. Green Chem.9, 566 (2007).Search in Google Scholar

11b 10.1080/10426500701761540, J.-S. Tian, L.-N. He. Phosphorus Sulfur Silicon Relat. Elem.183, 494 (2008).Search in Google Scholar

11c 10.1016/j.tetlet.2005.12.077, Y. Du, J.-Q. Wang, J.-Y. Chen, F. Cai, J.-S. Tian, D.-L. Kong, L.-N. He. Tetrahedron Lett.47, 1271 (2006).Search in Google Scholar

12a 10.1039/b500074b, Y. Du, F. Cai, D.-L. Kong, L.-N. He. Green Chem.7, 518 (2005).Search in Google Scholar

12b 10.1006/jcat.2002.3662, H. Yasuda, L.-N. He, T. Sakakura. J. Catal.209, 547 (2002).Search in Google Scholar

12c 10.1016/S0167-2991(03)80209-4, H. Yasuda, L.-N. He, T. Sakakura. Stud. Surf. Sci. Catal.136, 259 (2003).Search in Google Scholar

12d 10.1016/j.molcata.2006.01.008, J.-Q. Wang, D.-L. Kong, J.-Y. Chen, F. Cai, L.-N. He. J. Mol. Catal. A: Chem.249, 143 (2006).Search in Google Scholar

12e 10.1016/j.catcom.2006.05.049, J.-Q. Wang, X.-D. Yue, F. Cai, L.-N. He. Catal. Commun.8, 167 (2007).Search in Google Scholar

12f 10.2174/1874095200802010068, C.-X. Miao, J.-Q. Wang, L.-N. He. Open Org. Chem. J.2, 68 (2008).Search in Google Scholar

13a 10.1016/j.molcata.2007.03.047, Y. Zhao, J.-S. Tian, X.-H. Qi, Z.-N. Han, Y.-Y. Zhuang, L.-N. He. J. Mol. Catal. A: Chem.271, 284 (2007).Search in Google Scholar

13b 10.1016/j.cclet.2007.12.033, Y. Zhao, L.-N. He, Y. Y. Zhuang, J. Q. Wang. Chin. Chem. Lett.19, 286 (2008).Search in Google Scholar

14a 10.1039/b807108j, J.-L. Wang, J.-Q. Wang, L.-N. He, X.-Y. Dou, F. Wu. Green Chem.10, 1218 (2008).Search in Google Scholar

14b 10.1039/b615612f, N. Eghbali, C. J. Li. Green Chem.9, 213 (2007).Search in Google Scholar

15a 10.1016/j.molcata.2005.07.030, Y. Du, D.-L. Kong, H.-Y. Wang, F. Cai, J.-S. Tian, J.-Q. Wang, L.-N. He. J. Mol. Catal. A: Chem.241, 233 (2005).Search in Google Scholar

15b 10.1016/j.catcom.2008.02.004, Y. Du, L.-N. He. Catal. Commun.9, 1754 (2008).Search in Google Scholar

16 10.1016/S0022-328X(00)93372-2, P. J. Smith, R. F. M. White, L. Smith. J. Organomet. Chem.40, 341 (1972).Search in Google Scholar

17a 10.1016/j.apcata.2005.12.002, J.-S. Tian, J.-Q. Wang, J.-Y. Chen J.-G. Fan, F. Cai, L.-N. He. Appl. Catal. A: Gen.301, 215 (2006).Search in Google Scholar

17b L.-N. He, J.-S. Tian, C.-X. Miao, F. Cai, J.-Q. Wang, Y. Du. Preprint pap.—Am. Chem. Soc., Div. Fuel Chem.51, 534 (2006).Search in Google Scholar

18 10.1021/jo800269v, Y. Du, Y. Wu, A.-H. Liu, L.-N. He. J. Org. Chem.73, 4709 (2008).Search in Google Scholar PubMed

Online erschienen: 2009-10-29
Erschienen im Druck: 2009-10-31

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-08-10-22/html
Scroll to top button