Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 81, Issue 6

Issues

Exploration and engineering of biosynthetic pathways in the marine actinomycete Salinispora tropica

Markus Nett
  • Corresponding author
  • Scripps Institution of Oceanography and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bradley S. Moore
  • Corresponding author
  • Scripps Institution of Oceanography and the Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-05-05 | DOI: https://doi.org/10.1351/PAC-CON-08-08-08

In recent years, members of the marine actinomycete genus Salinispora have proven to be a precious source of structurally diverse secondary metabolites, including the potent anticancer agent salinosporamide A and the enediyne-derived sporolides. The tremendous potential of these marine-dwelling microbes for natural products biosynthesis, however, was not fully realized until sequencing of the Salinispora tropica genome revealed the presence of numerous orphan biosynthetic loci besides a plethora of rare metabolic pathways. This contribution summarizes the biochemical exploration of this prolific organism, highlighting studies in which genome-based information was exploited for the discovery of new enzymatic processes and the engineering of unnatural natural products. Inactivation of key genes within the salinosporamide pathway has expanded its inherent metabolic plasticity and enabled access to various salinosporamide derivatives by mutasynthesis. New insights into the biosynthesis of the sporolides allowed us to increase production titers of these structurally complex molecules, thereby providing the means to search for the DNA cleaving presporolide enediyne.

Keywords: biosynthesis; Salinispora; mutasynthesis; salinosporamides; sporolides

Conference

International Conference on Biodiversity and Natural Products (ICOB-6 & ISCNP-26), International Conference on Biodiversity, International Symposium on the Chemistry of Natural Products, ICOB, ISCNP, Biodiversity, Natural Products, Charlottetown, Prince Edward Island, Canada, 2008-07-13–2008-07-18

References

  • 1.

    P. R. Jensen, R. Dwight, W. Fenical. Appl. Environ. Microbiol. 57, 1102 (1991).Google Scholar

  • 2.

    , T. J. Mincer, P. R. Jensen, C. A. Kauffman, W. Fenical. Appl. Environ. Microbiol. 68, 5005 (2002).CrossrefGoogle Scholar

  • 3.

    , L. A. Maldonado, W. Fenical, P. R. Jensen, C. A. Kauffman, T. J. Mincer, A. C. Ward, A. T. Bull, M. Goodfellow. Int. J. System. Evol. Microbiol. 55, 1759 (2005).CrossrefGoogle Scholar

  • 4.

    , P. R. Jensen, C. Mafnas. Environ. Microbiol. 8, 1881 (2006).CrossrefGoogle Scholar

  • 5.

    , W. Fenical, P. R. Jensen. Nat. Chem. Biol. 2, 666 (2006).CrossrefGoogle Scholar

  • 6.

    , D. Chauhan, L. Catley, G. L. Li, K. Podar, T. Hideshima, M. Velankar, C. Mitsiades, N. Mitsiades, H. Yasui, A. Letai, H. Ovaa, C. Berkers, B. Nicholson, T. H. Chao, S. T. C. Neuteboom, P. Richardson, M. A. Palladino, K. C. Anderson. Cancer Cell 8, 407 (2005).CrossrefGoogle Scholar

  • 7.

    , P. R. Jensen, P. G. Williams, D.-C. Oh, L. Zeigler, W. Fenical. Appl. Environ. Microbiol. 73, 1146 (2007).CrossrefGoogle Scholar

  • 8.

    , D. W. Udwary, L. Zeigler, R. N. Asolkar, V. Singan, A. Lapidus, W. Fenical, P. R. Jensen, B. S. Moore. Proc. Natl. Acad. Sci. USA 104, 10376 (2007).CrossrefGoogle Scholar

  • 9.

    , R. H. Feling, G. O. Buchanan, T. J. Mincer, C. A. Kauffman, P. R. Jensen, W. Fenical. Angew. Chem., Int. Ed. 115, 369 (2003).CrossrefGoogle Scholar

  • 10.

    , S. Omura, M. Hayashi, H. Tomoda. Pure Appl. Chem. 71, 1673 (1999).CrossrefGoogle Scholar

  • 11.

    , B. S. Moore, A. E. Eustaquio, R. P. McGlinchey. Curr. Opin. Chem. Biol. 12, 434 (2008).CrossrefGoogle Scholar

  • 12.

    , M. Groll, K. B. Kim, N. Kairies, R. Huber, C. M. Crews. J. Am. Chem. Soc. 122, 1237 (2000).CrossrefGoogle Scholar

  • 13.

    , M. Groll, R. Huber, B. C. M. Potts. J. Am. Chem. Soc. 128, 5136 (2006).CrossrefGoogle Scholar

  • 14.

    , P. G. Williams, G. O. Buchanan, R. H. Feling, C. A. Kauffman, P. R. Jensen, W. Fenical. J. Org. Chem. 70, 6196 (2005).CrossrefGoogle Scholar

  • 15.

    , K. A. Reed, R. R. Manam, S. S. Mitchell, J. Xu, S. Teisan, T.-H. Chao, G. Deyanat-Yadzi, S. T. C. Neuteboom, K. S. Lam, B. C. M. Potts. J. Nat. Prod. 70, 269 (2007).CrossrefGoogle Scholar

  • 16.

    , L. L. Beer, B. S. Moore. Org. Lett. 9, 845 (2007).CrossrefGoogle Scholar

  • 17.

    , F. H. Vaillancourt, E. Yeh, D. A. Vosburg, S. Garneau-Tsodikova, C. T. Walsh. Chem. Rev. 106, 3364 (2006).CrossrefGoogle Scholar

  • 18.

    , C. Dong, F. Huang, H. Deng, C. Schaffrath, J. B. Spencer, D. O'Hagan, J. H. Naismith. Nature 427, 561 (2004).CrossrefGoogle Scholar

  • 19.

    , A. S. Eustaquio, F. Pojer, J. P. Noel, B. S. Moore. Nat. Chem. Biol. 4, 69 (2008).CrossrefGoogle Scholar

  • 20.

    , K. S. Lam, G. Tsueng, K. A. McArthur, S. S. Mitchell, B. C. M. Potts, J. Xu. J. Antibiot. 60, 13 (2007).CrossrefGoogle Scholar

  • 21.

    The substrate discrimination of subsequent pathway enzymes prevents an in vivo production of iodosalinosporamide.Google Scholar

  • 22.

    , V. R. Macherla, S. S. Mitchell, R. R. Manam, K. A. Reed, T.-H. Chao, B. Nicholson, G. Deyanat-Yazdi, B. Mai, P. R. Jensen, W. F. Fenical, S. T. C. Neuteboom, K. S. Lam, M. A. Palladino, B. C. M. Potts. J. Med. Chem. 48, 3684 (2005).CrossrefGoogle Scholar

  • 23.

    , A. S. Eustaquio, B. S. Moore. Angew. Chem., Int. Ed. 47, 3936 (2008).CrossrefGoogle Scholar

  • 24.

    E. J. Corey, W. Z. Li. Chem. Pharm. Bull. 47, 1 (1999).CrossrefGoogle Scholar

  • 25.

    , L. R. Reddy, J.-F. Fournier, B. V. S. Reddy, E. J. Corey. J. Am. Chem. Soc. 127, 8974 (2005).CrossrefGoogle Scholar

  • 26.

    , R. P. McGlinchey, M. Nett, A. S. Eustaquio, R. N. Asolkar, W. Fenical, B. S. Moore. J. Am. Chem. Soc. 130, 7822 (2008).CrossrefGoogle Scholar

  • 27.

    , G. O. Buchanan, P. G. Williams, R. H. Feling, C. A. Kauffman, P. R. Jensen, W. Fenical. Org. Lett. 7, 2731 (2005).CrossrefGoogle Scholar

  • 28.

    , D.-C. Oh, P. G. Williams, C. A. Kauffman, P. R. Jensen, W. Fenical. Org. Lett. 8, 1021 (2006).CrossrefGoogle Scholar

  • 29.

    , C. L. Perrin, B. L. Rodgers, J. M. O'Connor. J. Am. Chem. Soc. 129, 4795 (2007).CrossrefGoogle Scholar

  • 30.

    , J. Brownlee, P. He, G. R. Moran, D. H. T. Harrison. Biochemistry 47, 2002 (2008).CrossrefGoogle Scholar

  • 31.

    , R. P. McGlinchey, M. Nett, B. S. Moore. J. Am. Chem. Soc. 130, 2406 (2008).CrossrefGoogle Scholar

  • 32.

    , B. K. Hubbard, M. G. Thomas, C. T. Walsh. Chem. Biol. 7, 931 (2000).CrossrefGoogle Scholar

  • 33.

    , H. Gross. Appl. Microbiol. Biotechnol. 75, 267 (2007).CrossrefGoogle Scholar

  • 34.

    , G. L. Challis. J. Med. Chem. 51, 2618 (2008).CrossrefGoogle Scholar

  • 35.

    , A. W. Schultz, D.-C. Oh, J. R. Carney, R. T. Williamson, D. W. Udwary, P. R. Jensen, S. J. Gould, W. Fenical, B. S. Moore. J. Am. Chem. Soc. 130, 4507 (2008).CrossrefGoogle Scholar

About the article

Published Online: 2009-05-05

Published in Print: 2009-05-05


Citation Information: Pure and Applied Chemistry, Volume 81, Issue 6, Pages 1075–1084, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-08-08-08.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Carolina A. Contador, Vida Rodríguez, Barbara A. Andrews, and Juan A. Asenjo
BMC Systems Biology, 2019, Volume 13, Number 1
[2]
Shuji Yamashita, Kanae Terayama, Eri Ozeki, Yujiro Hayashi, and Masahiro Hirama
Organic Letters, 2017
[3]
K. C. Nicolaou, Yanping Wang, Min Lu, Debashis Mandal, Manas R. Pattanayak, Ruocheng Yu, Akshay A. Shah, Jason S. Chen, Hongjun Zhang, James J. Crawford, Laxman Pasunoori, Yam B. Poudel, Naidu S. Chowdari, Chin Pan, Ayesha Nazeer, Sanjeev Gangwar, Gregory Vite, and Emmanuel N. Pitsinos
Journal of the American Chemical Society, 2016, Volume 138, Number 26, Page 8235
[4]
C. A. Contador, V. Rodríguez, B. A. Andrews, and J. A. Asenjo
Antonie van Leeuwenhoek, 2015, Volume 108, Number 5, Page 1075
[5]
Paul R. Jensen, Bradley S. Moore, and William Fenical
Nat. Prod. Rep., 2015, Volume 32, Number 5, Page 738
[6]
Kesavan Dineshkumar, Vasudevan Aparna, Kantilal Z. Madhuri, and Waheeta Hopper
Chemical Biology & Drug Design, 2014, Volume 83, Number 3, Page 350
[7]
Mickaël Jean, Sophie Tomasi, and Pierre van de Weghe
Organic & Biomolecular Chemistry, 2012, Volume 10, Number 37, Page 7453
[8]
K. C. Nicolaou, Jianhua Wang, Yefeng Tang, and Lorenzo Botta
Journal of the American Chemical Society, 2010, Volume 132, Number 32, Page 11350
[9]
Shwan Rachid, Liujie Huo, Jennifer Herrmann, Marc Stadler, Bärbel Köpcke, Jens Bitzer, and Rolf Müller
ChemBioChem, 2011, Volume 12, Number 6, Page 922
[10]
Tobias Knobloch, Kirsten Harmrolfs, Florian Taft, Binia Thomaszewski, Florenz Sasse, and Andreas Kirschning
ChemBioChem, 2011, Volume 12, Number 4, Page 540
[11]
Robert A. Hill
Annual Reports Section "B" (Organic Chemistry), 2010, Volume 106, Page 156
[12]
Markus Nett, Haruo Ikeda, and Bradley S. Moore
Natural Product Reports, 2009, Volume 26, Number 11, Page 1362

Comments (0)

Please log in or register to comment.
Log in