Skip to content
Publicly Available Published by De Gruyter July 28, 2009

Density functional theory study of the Jahn-Teller effect in cobaltocene

  • Matija Zlatar , Carl-Wilhelm Schläpfer , Emmanuel Penka Fowe and Claude A. Daul

A detailed discussion of the potential energy surface of bis(cyclopentadienyl)cobalt(II), cobaltocene, is given. Vibronic coupling coefficients are calculated using density functional theory (DFT). Results are in good agreement with experimental findings. On the basis of our calculation there is no second-order Jahn–Teller (JT) effect as predicted by group theory. The JT distortion can be expressed as a linear combination of all totally symmetric normal modes of the low-symmetry, minimum-energy conformation. The out-of-plane ring deformation is the most important mode. The JT distortion is analyzed by seeking the path of minimal energy of the adiabatic potential energy surface.

References

1. doi:10.1098/rspa.1937.0142, H. A. Jahn, E. Teller. Proc. R. Soc. London, Ser. A 161, 220 (1937).Search in Google Scholar

2. I. B. Bersuker. The JahnTeller Effect, Cambridge University Press (2006).10.1017/CBO9780511524769Search in Google Scholar

3. R. G. Pearson. Symmetry Rules for Chemical Reactions, Wiley-Interscience, New York (1976).Search in Google Scholar

4. doi:10.1021/j100796a043, A. D. Liehr. J. Phys. Chem. 67, 389 (1963).Search in Google Scholar

5. R. Boca, M. Breza, P. Pelikan. Struct. Bonding 71, 57 (1989).10.1007/3-540-50775-2_2Search in Google Scholar

6. D. Reinen, M. Atanasov. Magn. Reson. Rev. 15, 167 (1991).Search in Google Scholar

7. doi:10.1002/(SICI)1096-987X(19970130)18:2<260::AID-JCC10>3.0.CO;2-M, I. B. Bersuker. J. Comput. Chem. 18, 260 (1997).Search in Google Scholar

8. R. G. Parr, W. Yang. Density-Functional Theory of Atoms and Molecules, Oxford University Press (1989).Search in Google Scholar

9. doi:10.1007/BF00551551, T. Ziegler, A. Rauk, E. J. Baerends. Theor. Chim. Acta 43, 261 (1977).Search in Google Scholar

10. doi:10.1002/qua.560520414, C. Daul. Int. J. Quant. Chem. 52, 867 (1994).Search in Google Scholar

11. doi:10.1021/ic961220+, R. Bruyndockx, C. Daul, P. T. Manoharan, E. Deiss. Inorg. Chem. 36, 4251 (1997).Search in Google Scholar

12. doi:10.1021/ic981111q, T. K. Kundu, R. Bruyndockx, C. Daul, P. T. Manoharan. Inorg. Chem. 38, 3931 (1999).Search in Google Scholar

13. doi:10.1021/jp0731912, M. Atanasov, P. Comba, C. Daul, A. Hauser. J. Phys. Chem. A 111, 9145 (2007).Search in Google Scholar

14. doi:10.1063/1.1678300, J. H. Ammeter, J. D. Swallen. J. Chem. Phys. 57, 678 (1972).Search in Google Scholar

15. R. Bucher. ESR-Untersuchungen an Jahn-Teller-Aktiven Sandwitchkomplexen, Ph.D. thesis, ETH Zurich (1977).Search in Google Scholar

16. doi:10.1016/0301-0104(78)87139-0, E. Koning, R. Schnakig, S. Kremer, B. Kanellakopulos, R. Klenze. Chem. Phys. 27, 331 (1978).Search in Google Scholar

17. doi:10.1002/hlca.19810640412, J. H. Ammeter, L. Zoller, J. Bachmann, P. Baltzer, E. Gamp, R. Bucher, E. Deiss. Helv. Chim. Acta 64, 1063 (1981).Search in Google Scholar

18. doi:10.1021/ja00370a008, J. Weber, A. Goursot, E. Penigault, J. H. Ammeter, J. Bachmann. J. Am. Chem Soc. 104, 1491 (1982).Search in Google Scholar

19. doi:10.1021/ic00190a012, A. Stebler, A. Furrer, J. H. Ammeter. Inorg. Chem. 23, 3493 (1984).Search in Google Scholar

20. doi:10.1103/PhysRevA.40.1637, H. Eicher. Phys. Rev. A 40, 1637 (1989).Search in Google Scholar

21. doi:10.1021/jp952465v, N. Matsuzawa, J. Seto, D. Dixon. J. Phys. Chem. A 101, 9391 (1997).Search in Google Scholar

22. doi:10.1021/j100717a029, K. Fukui. J. Phys. Chem. 74, 4161 (1970).Search in Google Scholar

23. doi:10.1021/ar00072a001, K. Fukui. Acc. Chem. Res. 14, 363 (1981).Search in Google Scholar

24. doi:10.1063/1.466129, L. Deng, T. Ziegler. J. Chem. Phys. 99, 3823 (1993).Search in Google Scholar

25. doi:10.1002/qua.560520406, L. Deng, T. Ziegler. Int. J. Quant. Chem. 52, 731 (1994).Search in Google Scholar

26. doi:10.1007/BF01350054, R. Renner. Z. Phys. 92, 172 (1934).Search in Google Scholar

27. R. F. W. Bader. Mol. Phys. 137, 3 (1960).10.1080/00268976000100161Search in Google Scholar

28. doi:10.1139/v62-178, R. F. W. Bader. Can. J. Chem. 40, 1164 (1962).Search in Google Scholar

29. doi:10.1063/1.1670293, R. F. W. Bader, A. D. Bandrauk. J. Chem. Phys. 49, 1666 (1968).Search in Google Scholar

30. E. P. Wigner. Gruppentheorie, Vieweg, Braunschweig (1930).Search in Google Scholar

31. doi:10.1103/RevModPhys.2.305, C. Eckart. Rev. Mod. Phys. 2, 305 (1930).Search in Google Scholar

32. doi:10.1021/ja00332a012, A. Ceulemans, D. Beyens, L. G. Vanquickenborne. J. Am. Chem. Soc. 106, 5824 (1984).Search in Google Scholar

33. A. Ceulemans, L. G. Vanquickenborne. Struct. Bonding 71, 125 (1989).10.1007/3-540-50775-2_4Search in Google Scholar

34. doi:10.1021/jp983829x, T. A. Barckholtz, T. A. Miller. J. Phys. Chem. A 103, 2321 (1999).Search in Google Scholar

35. ADF2006.01, SCM, Theoretical Chemistry, Vrije Universiteit Amsterdam, The Netherlands, <http://www.scm.com>.Search in Google Scholar

36. doi:10.1002/jcc.1056, G. te Velde, F. M. Bickelhaupt, S. J. A. Gisbergen, C. F. Guerra, E. J. Baerends, J. G. Snijders, T. Ziegler. J. Comput. Chem. 22, 931 (2001).Search in Google Scholar

37. C. F. Guerra, J. G. Snijders, G. te Velde, E. J. Baerends. Theor. Chem. Acc. 99, 391 (1998).Search in Google Scholar

38. S. Vosko, L. Wilk, M. Nusair. Can. J. Phys. 58, 1200 (1980).Search in Google Scholar

39. doi:10.1103/PhysRevB.33.8822, J. Perdew, Y. Wang. Phys. Rev. B 33, 8822 (1986).Search in Google Scholar

40. doi:10.1103/PhysRevB.46.6671, J. Perdew, J. Chevary, S. Vosko, K. Jackson, M. Pederson, D. Singh, C. Fiolhais. Phys. Rev. B 46, 6671 (1992).Search in Google Scholar

41. doi:10.1016/S0010-4655(96)00120-8, A. Brces, R. M. Dickson, L. Fan, H. Jacobsen, D. Swerhone, T. Ziegler. Comput. Phys. Commun. 100, 247 (1997).Search in Google Scholar

42. doi:10.1016/S0010-4655(96)00119-1, H. Jacobsen, A. Brces, D. Swerhone, T. Ziegler. Comput. Phys. Commun. 100, 263 (1997).Search in Google Scholar

43. doi:10.1002/qua.20653, S. K. Wolff. Int. J. Quant. Chem. 104, 645 (2005).Search in Google Scholar

44. doi:10.1007/s00214-006-0185-2, W. Hug, M. Fedorovsky. Theor. Chem. Acc. 119, 113 (2008).Search in Google Scholar

45. doi:10.1163/157404006779194132, M. Fedorovsky. Comp. Lett. 2, 233 (2006).Search in Google Scholar

46. Z.-F. Xu, Y. Xie, W.-L. Feng, H. F. Schaefer III. J. Phys. Chem. A 107, 2176 (1997).Search in Google Scholar

47. doi:10.1016/j.ica.2006.07.073, M. Swart. Inorg. Chim. Acta 360, 179 (2007).Search in Google Scholar

48. A. Berces, T. Ziegler. Top. Curr Chem. 182, 41 (1996).Search in Google Scholar

49. M. Zlatar, C.-W. Schlaepfer, C. Daul. In The Jahn-Teller Effect, Advances and Perspectives, H. Koppel, H. Barentzen, D. R. Yarkony (Eds.), Springer-Verlag (2009). In press.Search in Google Scholar

50. doi:10.1016/S0022-328X(00)83000-4, J. Brunvoll, S. J. Cyvin, L. Schafer. J. Organomet. Chem. 27, 107 (1971).Search in Google Scholar

51. doi:10.1016/0022-2860(72)85011-7, L. Schafer, J. Brunvoll, S. J. Cyvin. J. Mol. Struct. 11, 459 (1972).Search in Google Scholar

52. doi:10.1039/dt9720002507, D. M. Adams, W. S. Fernando. J. Chem. Soc., Dalton Trans. 2507 (1972).Search in Google Scholar


Conference

Conference on Solid State Chemistry, Conference on Solid State Chemistry , SSC, Solid State Chemistry , 8th, Bratislava, Slovakia, 2008-07-06–2008-07-11


Online erschienen: 2009-7-28
Erschienen im Druck: 2009-7-31

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-08-06-04/html
Scroll to top button