Skip to content
Publicly Available Published by De Gruyter July 23, 2009

Nanostructured oxides for energy storage applications in batteries and supercapacitors

  • Amreesh Chandra , Alexander J. Roberts , Eric Lam How Yee and Robert C. T. Slade

Nanostructured materials are extensively investigated for application in energy storage and power generation devices. This paper deals with the synthesis and characterization of nanomaterials based on oxides of vanadium and with their application as electrode materials for energy storage systems viz. supercapacitors. These nano-oxides have been synthesized using a hydrothermal route in the presence of templates: 1-hexadecylamine, Tweens and Brij types. Using templates during synthesis enables tailoring of the particle morphology and physical characteristics of synthesized powders. Broad X-ray diffraction peaks show the formation of nanoparticles, confirmed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigations. SEM studies show that a large range of nanostructures such as needles, fibers, particles, etc. can be synthesized. These particles have varying surface areas and electrical conductivity. Enhancement of surface area as much as seven times relative to surface areas of starting parent materials has been observed. These properties make such materials ideal candidates for application as electrode materials in supercapacitors. Assembly and characterization of supercapacitors based on electrodes containing these active nano-oxides are discussed. Specific capacitance of >100 F g–1 has been observed. The specific capacitance decreases with cycling: causes of this phenomenon are presented.

References

1. doi:10.1016/j.rser.2007.01.023, H. Ibrahim, A. Ilinca, J. Perron. Renew. Sustain. Energy Rev. 12, 1221 (2008).Search in Google Scholar

2. doi:10.1146/annurev.energy.32.080106.133554, E. Martinot, C. Dienst, L. Weiliang, C. Qimin. Annu. Rev. Environ. Resour. 32, 205 (2007).Search in Google Scholar

3. J. Larminie, A. Dicks. Fuel Cells Systems Explained, John Wiley, Chichester (2001).Search in Google Scholar

4. doi:10.1002/9780470258590, B. E. Logan. Microbial Fuel Cells, John Wiley, New York (2007).Search in Google Scholar

5. doi:10.1021/es8003766, F. Zhao, N. Rahunen, J. Varcoe, A. Chandra, A. R. Claudio, A. Thumser, R. C. T. Slade. Environ. Sci. Technol. 42, 4971 (2008).Search in Google Scholar

6. doi:10.1088/0964-1726/16/3/R01, S. R. Anton, H. A. Sodano. Smart Mater. Struct. 16, R1 (2007).Search in Google Scholar

7. doi:10.1016/j.ssc.2008.05.012, A. Chandra, A. J. Roberts, R. C. T. Slade. Solid-State Commun. 147, 83 (2008).Search in Google Scholar

8. B. E. Conway. Electrochemical Supercapacitors, Kluwer Academia/Plenum, New York (1999).10.1007/978-1-4757-3058-6Search in Google Scholar

9. doi:10.1073/pnas.0706508104, V. L. Pushparaj, M. M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, R. J. Linhardt, O. Nalamasu, P. M. Ajayan. Proc. Natl. Acad. Sci. USA 104, 13574 (2007).Search in Google Scholar

10. doi:10.1126/science.1132195, J. Chmiola, Y. Yushin, Y. Gogotsi, C. Portet, P. Simon, P. L. Taberna. Science 313, 1760 (2006).Search in Google Scholar

11. doi:10.1016/j.jpowsour.2005.07.007, S. F. J. Flipsen. J. Power Sources 162, 927 (2006).Search in Google Scholar

12. doi:10.1016/j.jpowsour.2004.12.011, J. N. M. Francoise, H. Gualous, R. Outbib, A. Berthon. J. Power Sources 143, 275 (2005).Search in Google Scholar

13. doi:10.1016/j.jpowsour.2006.10.090, E. Karden, S. Ploumen, B. Fricke, T. Miller, K. Snyder. J. Power Sources 168, 2 (2007).Search in Google Scholar

14. doi:10.1016/j.jpowsour.2007.08.078, R. Kotz, J.-C. Sauter, P. Ruch, P. Dietrich, F. N. Buchi, P. A. Magne, P. Varenne. J. Power Sources 174, 264 (2007).Search in Google Scholar

15. doi:10.1016/j.jpowsour.2007.06.009, M. Mastragostino, F. Soavi. J. Power Sources 174, 89 (2007).Search in Google Scholar

16. doi:10.1016/j.jpowsour.2005.09.014, P. Thounthong, S. Rael, B. Davat. J. Power Sources 158, 806 (2006).Search in Google Scholar

17. doi:10.1016/j.elecom.2007.09.015, S. B. Ma, K. W. Nam, W. S. Yoon, X. Q. Yang, K. Y. Ahn, K. W. Oh, K. B. Kim. Electrochem. Commun. 9, 2807 (2007).Search in Google Scholar

18. doi:10.1016/j.jpowsour.2006.04.012, V. Subramanian, H. Zhu, B. Wei. J. Power Sources 159, 361 (2006).Search in Google Scholar

19. doi:10.1016/j.matchemphys.2005.06.004, C. Chen, D. Zhao, D. Xu, X. Wang. Mater. Chem. Phys. 95, 84 (2006).Search in Google Scholar

20. doi:10.1016/j.matchemphys.2007.04.034, G. Wang, M. Qu, Z. Yu, R. Yuan. Mater. Chem. Phys. 105, 169 (2007).Search in Google Scholar

21. doi:10.1016/j.elecom.2005.08.017, Y. G. Wang, Y. Y. Xia. Electrochem. Commun. 7, 1138 (2005).Search in Google Scholar

22. doi:10.1016/j.jpowsour.2007.09.062, M. Wu, L. Zhang, D. Wang, C. Xiao, S. Zhang. J. Power Sources 175, 669 (2008).Search in Google Scholar

23. doi:10.1016/S0379-6779(03)00039-0, A. M. White, R. C. T. Slade. Synth. Metal 139, 123 (2003).Search in Google Scholar

24. F. Rouquerol, J. Rouquerol, K. Sing. Adsorption by Powders and Porous Solids, Academic Press, London (1999).Search in Google Scholar

25. doi:10.1351/pac199466081739, J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. H. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, K. K. Unger. Pure Appl. Chem. 66, 1739 (1994).Search in Google Scholar


Conference

Conference on Solid State Chemistry, Conference on Solid State Chemistry , SSC, Solid State Chemistry , 8th, Bratislava, Slovakia, 2008-07-06–2008-07-11


Online erschienen: 2009-7-23
Erschienen im Druck: 2009-7-23

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-08-08-20/html
Scroll to top button