Skip to content
Publicly Available Published by De Gruyter July 28, 2009

Spectroscopy of a single Sb2Se3 nanorod

  • Kien Wen Sun , Cheng-Hang Yang , Ting-Yu Ko , Hao-Wei Chang and Chen-Wei Liu

In this paper, we present solvothermal methods to chemically synthesize Sb2Se3 nanorods using dialkyl diselenophosphate (dsep) complexes of antimony. Energy-dispersive X-ray analysis shows the products are phase pure. We have also studied the Raman and photoluminescence spectroscopy of a single Sb2Se3 nanorod with an average size of 60 nm in diameter and a length less than 1 μm. Techniques have been devised to immobilize and allocate a single nano-object on an electron beam (E-beam) patterned smart substrate with metallic coordination markers. This also overcomes the limitation of spatial resolution of conventional optical techniques (~1 μm) to perform optical spectroscopy on an individual nano-object less than 100 nm in size. Raman spectroscopy reveals that Sb2Se3 nanorods synthesized at a lower temperature contain a small amount of Sb2Se3. The broad linewidth observed in luminescence spectra from a single rod is attributed to the increasing number of surface defects, impurities, and dangle bonds attached on the surface as the nanoparticle size reduced to nanometer scale.

References

1. doi:10.1002/pssa.2210130136, N. S. Platakis, H. C. Gatos. Phys. Status Solidi A 13, K1 (1972).Search in Google Scholar

2. doi:10.1016/0022-3697(57)90090-2, J. Black, E. M. Conwell, L. Sigle, C. W. Spencer. J. Phys. Chem. Solids 2, 240 (1957).Search in Google Scholar

3. doi:10.1016/S0040-6090(97)00415-X, K. Y. Rajapure, C. D. Lokhande, C. H. Bhosele. Thin Solid Films 311, 114 (1997).Search in Google Scholar

4. doi:10.1016/S0368-2048(99)00012-2, V. B. Nascimento, V. E. de Carvalho, R. Paniago, E. A. Soares, L. O. Ladeira, H. D. Pfannes. J. Electron Spectrosc. 104, 99 (1999).Search in Google Scholar

5. doi:10.1016/S0025-5408(99)00095-1, K. Y. Rajpure, C. D. Lokhande, C. H. Bhosale. Mater. Res. Bull. 34, 1079 (1999).Search in Google Scholar

6. doi:10.1016/0022-3697(59)90074-5, F. D. Rosi, B. Abeles, R. V. Jensen. J. Phys. Chem. Solids 10, 191 (1959).Search in Google Scholar

7. doi:10.1007/BF00722076, D. Arivouli, F. D. Gnanam, P. Ramasamy. J. Mater. Sci. Lett. 7, 711 (1988).Search in Google Scholar

8. N. Kh. Abrikosov, V. F. Bankina, L. V. Poretakaya, L. E. Skudnova, E. V. Skudnova. In Semiconductor II-VI and V-VI Compounds, A. Tybulewicz (Ed.), p. 186, Plenum, New York (1969).10.1007/978-1-4899-6373-4Search in Google Scholar

9. doi:10.1016/S0025-5408(02)00675-X, J. Wang, Z. Deng, Y. Li. Mater. Res. Bull. 37, 495 (2002).Search in Google Scholar

10. (a) doi:10.1246/cl.2002.1056, D. Wang, D. Yu, M. Shao, W. Yu, Y. Qian. Chem. Lett. 31, 1056 (2002);Search in Google Scholar

10. (b) doi:10.1016/S0022-0248(03)01019-4, D. Wang, D. Yu, M. Shao, W. Yu, Y. Qian. J. Cryst. Growth 253, 445 (2003).Search in Google Scholar

11. doi:10.1016/S0022-0248(03)00962-X, Q. Xie, Z. Liu, M. Shao, L. Kong, W. Yu, Y. Qian. J. Cryst. Growth 252, 570 (2003).Search in Google Scholar

12. doi:10.1016/S0167-577X(04)00119-3, Y. Zhang, G. Li, B. Zhang, L. Zhang. Mater. Lett. 58, 2279 (2004).Search in Google Scholar

13. doi:10.1021/jp076883z, G.-Y. Chen, B. Dneg, G.-B. Cai, T.-K. Zhang, W.-F. Dong, W.-X. Zhang, A.-W. Xu. J. Phys. Chem. C 112, 672 (2008).Search in Google Scholar

14. doi:10.1016/S0254-0584(03)00337-7, D. Wang, D. Yu, M. Shao, J. Xing, Y. Qian. Mater. Chem. Phys. 82, 546 (2003).Search in Google Scholar

15. doi:10.1021/ic0107072, X. Zheng, Y. Xie, L. Zhu, X. Jiang, Y. Jia, W. Song, Y. Sun. Inorg. Chem. 41, 455 (2002).Search in Google Scholar

16. doi:10.1016/j.materresbull.2005.03.015, M. Chen, L. Gao. Mater. Res. Bull. 40, 1120 (2005).Search in Google Scholar

17. doi:10.1016/S0022-0248(02)02525-3, G. Shen, D. Chen, K. Tang, X. Jiang, Y. Qian. J. Cryst. Growth 252, 350 (2003).Search in Google Scholar

18. doi:10.1016/j.matlet.2004.10.011, S. Xu, W.-B. Zhao, J.-M. Hong, J.-J. Zhu, H.-Y. Chen. Mater. Lett. 59, 319 (2005).Search in Google Scholar

19. H. Cui, H. Liu, J. Wang, X. Li, F. Han, R. I. Baoughton. J. Solid State. Chem. 271, 456 (2004).Search in Google Scholar

20. doi:10.1021/ja045556r, X. Qiu, C. Burda, R. Fu, L. Pu, H. Chen, J. Zhu. J. Am. Chem. Soc. 126, 16276 (2004).Search in Google Scholar

21. doi:10.1139/v68-230, M. V. Kudchadker, R. A. Zingaro, K. J. Irgolic. Can. J. Chem. 46, 1415 (1968).Search in Google Scholar

22. doi:10.1021/ic50081a022, V. Krishnan, R. A. Zingaro. Inorg. Chem. 8, 2337 (1969).Search in Google Scholar

23. doi:10.1021/jp076886b, Y.-F. Lin, H.-W. Chang, S.-Y. Lu, C. W. Liu. J. Phys. Chem. C 111, 18538 (2007).Search in Google Scholar

24. doi:10.1021/cg060954m, H.-W. Chang, B. Sarkar, C. W. Liu. Cryst. Growth Des. 7, 2691 (2007).Search in Google Scholar

25. doi:10.1016/0038-1098(81)90337-9, H. Richer, Z. P. Wang, L. Ley. Solid State Commun. 39, 625 (1981).Search in Google Scholar

26. doi:10.1016/j.jcrysgro.2003.11.004, X. Ma, Z. Zhang, X. Wang, S. Wang, F. Xu, Y. Qian. J. Cryst. Growth 263, 491 (2004).Search in Google Scholar

27. doi:10.1016/S0167-577X(02)00710-3, Z. G. Ivanova, E. Cernoskova, V. S. Vassilev, S. V. Boycheva. Mater. Lett. 57, 1025 (2003).Search in Google Scholar

28. doi:10.1021/jp063748y, Z. Deng, F. Tang, D. Chen, X. Meng, L. Cao, B. Zou. J. Phys. Chem. B 110, 18225 (2006).Search in Google Scholar

29. doi:10.1016/S0025-5408(02)00675-X, J. Wang, Z. Deng, Y. Li. Mater. Res. Bull. 37, 495 (2002).Search in Google Scholar

30. doi:10.1063/1.116699, K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt. Appl. Phys. Lett. 68, 403 (1996).Search in Google Scholar


Conference

Conference on Solid State Chemistry, Conference on Solid State Chemistry , SSC, Solid State Chemistry , 8th, Bratislava, Slovakia, 2008-07-06–2008-07-11


Online erschienen: 2009-7-28
Erschienen im Druck: 2009-7-31

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-08-08-34/html
Scroll to top button