Skip to content
Publicly Available Published by De Gruyter July 19, 2009

Solid-state NMR characterization of drug-model molecules encapsulated in MCM-41 silica

  • Thierry Azaïs , Geoffrey Hartmeyer , Sandrine Quignard , Guillaume Laurent , Corine Tourné-Péteilh , Jean-Marie Devoisselle and Florence Babonneau

In this contribution, we present a solid-state NMR approach to characterize drug-model molecules as ibuprofen, benzoic acid and lauric acid, encapsulated in MCM-41 silica and submitted to strong confinement effects. In particular, we show that by a careful choice of the solid-state NMR sequences, it is possible to efficiently characterize these highly mobile molecules and their interactions with the pore surface. Thus, we demonstrate that 13C NMR spectroscopy is a powerful tool to characterize and even quantify entrapped and non-entrapped species by using either single-pulse excitation (SPE) or cross-polarization (CP). Whereas the standard {1H}-13C CP experiment is of poor efficiency for mobile species, we show that 13C signal-to-noise (S/N) ratio can be significantly improved through 1H-13C cross-relaxation (namely, nuclear Overhauser effect, nOe) by using a 1H power-gated technique. The long transversal relaxation times [T2(1H) up to 22 ms] observed allow the set-up of J-coupling based experiments such as 2D {1H}-13C heteronuclear multiple-quantum coherence (HMQC) in order to fully characterize the encapsulated molecules. Thus, we demonstrate that the use of sequences derived from solution-state NMR such as these two latter experiments is highly efficient to characterize highly mobile organic molecules trapped in mesopores. Finally, we show that 1H spin diffusion-based experiments can give useful informations on the proximities between trapped molecules and the silica surface.

References

1. doi:10.1038/359710a0, C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck. Nature 359, 710 (1992).Search in Google Scholar

2. doi:10.1021/cm0011559, M. Vallet-Regi, A. Ramila, R. P. del Real, J. Perez-Pariente. Chem. Mater. 13, 308 (2001).Search in Google Scholar

3. doi:10.1039/b506090g, H. H. P. Yiu, P. A. Wright. J. Mater. Chem. 15, 3690 (2005).Search in Google Scholar

4. doi:10.1021/ef980113s, X. S. Zhao, Q. Ma, G. Q. Lu. Energy Fuels 12, 1051 (1998).Search in Google Scholar

5. doi:10.1016/j.micromeso.2007.06.056, N. Baccile, F. Babonneau. Microporous Mesoporous Mater. 110, 534 (2008).Search in Google Scholar

6. doi:10.1002/anie.200604488, M. Vallet-Regi, F. Balas, D. Arcos. Angew. Chem., Int. Ed. 46, 1762 (2007).Search in Google Scholar

7. doi:10.1016/S1381-1177(01)00011-X, H. H. P. Yiu, P. A. Wright, N. P. Botting. J. Mol. Catal. B: Enzym. 15, 81 (2001).Search in Google Scholar

8. doi:10.1016/j.ejpb.2003.12.007, C. Charnay, S. Begu, C. Tourne-Peteilh, L. Nicole, D. A. Lerner, J.-M. Devoisselle. Eur. J. Pharm. Biopharm. 57, 533 (2004).Search in Google Scholar

9. doi:10.1021/cm061551c, T. Azais, C. Tourne-Peteilh, F. Aussenac, N. Baccile, C. Coelho, J.-M. Devoisselle, F. Babonneau. Chem. Mater. 18, 6382 (2006).Search in Google Scholar

10. doi:10.1088/0953-8984/18/6/R01, C. Alba-Simionesco, B. Coasne, G. Dosseh, G. Dudziak, K E. Gubbins, R. Radhakrishnan, M. Sliwinska-Bartkowiak. J. Phys.: Condens. Matter 18, R15 (2006).Search in Google Scholar

11. doi:10.1088/0953-8984/17/15/R01, M. Alcoutalbi, G. B. McKenna. J. Phys.: Condens. Matter 17, R461 (2005).Search in Google Scholar

12. doi:10.1021/ja01269a023, S. Brunauer, P. H. Emmett, E. J. Teller. J. Am. Chem. Soc. 60, 309 (1938).Search in Google Scholar

13. doi:10.1016/S1387-1811(98)00263-7, A. Galarneau, D. Desplantier, R. Dutartre, F. Di Renzo. Microporous Mesoporous Mater. 27, 297 (1999).Search in Google Scholar

14. A. J. Shaka, J. Keeler, T. Frienkel, R. Freeman. J. Magn. Reson. 52, 335 (1983).Search in Google Scholar

15. doi:10.1016/j.jcis.2005.05.009, Y. Tozuka, S. Sasaoka, A. Nagae, K. Moribe, T. Oguchi, K. Yamamoto. J. Colloid Interface Sci. 291, 471 (2005).Search in Google Scholar

16. D. Neuhaus, M. P. Williamson. The Nuclear Overhauser Effect in Structural and Conformational Analysis, 2nd ed., John Wiley, New York (2000).Search in Google Scholar

17. A. Bax, R. H. Griffey, B. L. Hawkins. J. Magn. Reson. 55, 301 (1983).Search in Google Scholar

18. doi:10.1021/ja983048+, A. Lesage, D. Sakellariou, S. Steuernagel, L. Emsley. J. Am. Chem. Soc. 120, 13194 (1998).Search in Google Scholar

19. doi:10.1016/j.jmr.2005.11.015, C. Coelho, T. Azais, L. Bonhomme-Coury, J. Maquet, D. Massiot, C. Bonhomme. J. Magn. Reson. 179, 114 (2006).Search in Google Scholar

20. doi:10.1021/ar600030j, C. Bonhomme, C. Coelho, N. Baccile, C. Gervais, T. Azais, F. Babonneau. Acc. Chem. Res. 40, 738 (2007).Search in Google Scholar

21. doi:10.1021/cm062545j, N. Baccile, G. Laurent, C. Bonhomme, P. Innocenzi, F. Babonneau. Chem. Mater. 19, 1343 (2007).Search in Google Scholar

22. doi:10.1021/j100033a036, H. Koller, R. F. Lobo, S. L. Burkett, M. E. Davis. J. Phys. Chem. 99, 12588 (1995).Search in Google Scholar

23. K. Schmidt-Rohr, H. W. Spiess. Multidimensional Solid-State NMR and Polymers, Academic Press, London (1994).Search in Google Scholar


Conference

Conference on Solid State Chemistry, Conference on Solid State Chemistry , SSC, Solid State Chemistry , 8th, Bratislava, Slovakia, 2008-07-06–2008-07-11


Online erschienen: 2009-7-19
Erschienen im Druck: 2009-7-19

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.3.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-08-11-10/html
Scroll to top button