Jump to ContentJump to Main Navigation
Show Summary Details
In This Section

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2016: 2.626
5-year IMPACT FACTOR: 3.210

CiteScore 2016: 2.45

SCImago Journal Rank (SJR) 2015: 0.912
Source Normalized Impact per Paper (SNIP) 2015: 0.764

Online
ISSN
1365-3075
See all formats and pricing
In This Section
Volume 81, Issue 8 (Jul 2009)

Issues

Comparisons of structural iron reduction in smectites by bacteria and dithionite: II. A variable-temperature Mössbauer spectroscopic study of Garfield nontronite

Fabiana R. Ribeiro
  • Corresponding author
  • Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
/ José D. Fabris
  • Corresponding author
  • Department of Chemistry, Federal University of Minas Gerais – Campus Pampulha, Belo Horizonte, MG, Brazil
/ Joel E. Kostka
  • Corresponding author
  • Department of Oceanography, Florida State University, Tallahassee, FL 32306, USA
/ Peter Komadel
  • Corresponding author
  • Institute of Inorganic Chemistry , Slovak Academy of Sciences, SK-845 36 Bratislava, Slovakia
/ Joseph W. Stucki
  • Corresponding author
  • Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Published Online: 2009-07-24 | DOI: https://doi.org/10.1351/PAC-CON-08-11-16

The reduction of structural Fe in smectite may be mediated either abiotically by reaction with chemical reducing agents or biotically by reaction with various bacterial species. The effects of abiotic reduction on clay surface chemistry are much better known than the effects of biotic reduction, and differences between them are still in need of investigation. The purpose of the present study was to compare the effects of dithionite (abiotic) and bacteria (biotic) reduction of structural Fe in nontronite on the clay structure as observed by variable-temperature Mössbauer spectroscopy. Biotic reduction was accomplished by incubating Na-saturated Garfield nontronite (sample API 33a) with Shewanella oneidensis strain MR-1 (FeII/total Fe achieved was ~17 %). Partial abiotic reduction (FeII/total Fe ~23 %) was achieved using pH-buffered sodium dithionite. The nontronite was also reduced abiotically to FeII/total Fe ~96 %. Parallel samples were reoxidized by bubbling O2 gas through the reduced suspensions at room temperature prior to Mössbauer analysis at 77 and 4 K. At 77 K, the reduction treatments all gave spectra composed of doublets for structural FeII and FeIII in the nontronite. The spectra for reoxidized samples were largely restored to that of the unaltered sample, except for the sample reduced to 96 %. At 4 K, the spectrum for the 96 % reduced sample was highly complex and clearly reflected magnetic order in the sample. When partially reduced, the spectrum also exhibited magnetic order, but the features were completely different depending on whether reduced biotically or abiotically. The biotically reduced sample appeared to contain distinctly separate domains of FeII and FeIII within the structure, whereas partial abiotic reduction produced a spectrum representative of FeII–FeIII pairs as the dominant domain type. The 4 K spectra of the partially reduced, fully reoxidized samples were virtually the same as at 77 K, whereas reoxidation of the 96 % reduced sample produced a spectrum consisting of a magnetically ordered sextet with a minor contribution from a FeII doublet, indicating significant structural alterations compared to the unaltered sample.

Keywords: bacteria; cycles; nontronite; oxidation; redox; reduction; shewanella

Conference

Conference on Solid State Chemistry, Conference on Solid State Chemistry , SSC, Solid State Chemistry , 8th, Bratislava, Slovakia, 2008-07-06–2008-07-11

References

  • 1.

    J. W. Stucki. In Handbook of Clay Science, F. Bergaya, B. K. G. Theng, G. Lagaly (Eds.), pp. 429482, Elsevier, Amsterdam (2006).Google Scholar

  • 2.

    , J. W. Stucki, J. E. Kostka. C. R. Geosci. 338, 468 (2006).CrossrefGoogle Scholar

  • 3.

    , D. P. Jaisi, S. Ji, H. Dong, R. E. Blake, D. D. Eberl, J. W. Kim. Clays Clay Miner. 56, 416 (2008).CrossrefGoogle Scholar

  • 4.

    , D. P. Jaisi, H. Dong, J. P. Morton. Clays Clay Miner. 56, 175 (2008).CrossrefGoogle Scholar

  • 5.

    , G. Zhang, J. W. Kim, H. Dong, A. J. Sommer. Am. Mineral. 92, 1401 (2007).CrossrefGoogle Scholar

  • 6.

    J. W. Stucki. In Iron in Soils and Clay Minerals, J. W. Stucki, B. A. Goodman, U. Schwertmann (Eds.), pp. 625675, D. Reidel, Dordrecht (1988).Google Scholar

  • 7.

    , D. M. Akob, H. J. Mills, T. M. Gihring, L. Kerkhof, J. W. Stucki, K.-J. Chin, K. Kuesel, A. V. Palumbo, D. B. Watson, J. E. Kostka. Appl. Environ. Microbiol. 74, 3159 (2008).CrossrefGoogle Scholar

  • 8.

    , J. W. Stucki, K. Lee, B. A. Goodman, J. E. Kostka. Geochim. Cosmochim. Acta 71, 835 (2007).CrossrefGoogle Scholar

  • 9.

    , K. Lee, J. E. Kostka, J. W. Stucki. Clays Clay Miner. 54, 197 (2006).CrossrefGoogle Scholar

  • 10.

    , C.-I. Fialips, D. Huo, L. Yan, J. Wu, J. W. Stucki. Clays Clay Miner. 50, 455 (2002).CrossrefGoogle Scholar

  • 11.

    C.-I. Fialips, D. Huo, L. Yan, J. Wu, J. W. Stucki. Am. Mineral. 87, 630 (2002).Google Scholar

  • 12.

    , H. Dong, J. E. Kostka, J. Kim. Clays Clay Miner. 51, 502 (2003).CrossrefGoogle Scholar

  • 13.

    , H. Dong, R. K. Kukkadapu, J. K. Frederickson, J. M. Zachara, D. W. Kennedy, H. M. Kostandarithes. Environ. Sci. Technol. 37, 1268 (2003).CrossrefGoogle Scholar

  • 14.

    , J. W. Kim, Y. Furukawa, T. E. Daulton, D. Lavoie, S. W. Newell. Clays Clay Miner. 51, 382 (2003).CrossrefGoogle Scholar

  • 15.

    J. M. D. Coey. In Mossbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 1, G. J. Long (Ed.), pp. 443509, Plenum Press, New York (1984).Google Scholar

  • 16.

    J. M. D. Coey. In Iron in Soils and Clay Minerals, J. W. Stucki, B. A. Goodman, U. Schwertmann (Eds.), pp. 397466, D. Reidel, Dordrecht (1988).Google Scholar

  • 17.

    , B. A. Goodman, J. D. Russell, A. R. Fraser, F. W. D. Woodhams. Clays Clay Miner. 24, 53 (1976).CrossrefGoogle Scholar

  • 18.

    B. A. Goodman. In Advanced Chemical Methods for Soil and Clay Mineral Research, J. W. Stucki, W. L. Banwart (Eds.), pp. 192, D. Reidel, Dordrecht (1980).Google Scholar

  • 19.

    E. Murad. In Iron in Soils and Clay Minerals, J. W. Stucki, B. A. Goodman, U. Schwertmann (Eds.), pp. 309350, D. Reidel, Dordrecht (1988).Google Scholar

  • 20.

    , J. W. Stucki, K. Lee, B. A. Goodman, J. E. Kostka. Geochim. Cosmochim. Acta 71, 835 (2007).CrossrefGoogle Scholar

  • 21.

    , K. H. Nealson, D. Saffarini. Annu. Rev. Microbiol. 48, 311 (1994).CrossrefGoogle Scholar

  • 22.

    , J. E. Kostka, J. W. Stucki, K. H. Nealson, J. Wu. Clays Clay Miner. 44, 522 (1996).CrossrefGoogle Scholar

  • 23.

    , J. W. Stucki, D. C. Golden, C. B. Roth. Clays Clay Miner. 32, 191 (1984).CrossrefGoogle Scholar

  • 24.

    , P. Komadel, J. W. Stucki. Clays Clay Miner. 36, 379 (1988).CrossrefGoogle Scholar

  • 25.

    , A. S. Anastacio, B. Harris, H.-I. Yoo, J. D. Fabris, J. W. Stucki. Geochim. Cosmochim. Acta 72, 5001 (2008).CrossrefGoogle Scholar

  • 26.

    , E. Murad. Z. Pflanzen. Boden. 150, 279 (1987).CrossrefGoogle Scholar

  • 27.

    , J. D. Russell, B. A. Goodman, A. R. Fraser. Clays Clay Miner. 27, 63 (1979).CrossrefGoogle Scholar

  • 28.

    J. W. Stucki, P. R. Lear. In Structures and Active Sites of Minerals, L. M. Coyne, D. Blake, S. McKeever (Eds.), pp. 330358, American Chemical Society, Washington, DC (1989).Google Scholar

  • 29.

    A. Manceau, V. A. Drits, B. Lanson, G. Chateigner, J. Wu, D. Huo, W. P. Gates, J. W. Stucki. Am. Mineral. 85, 153 (2000).Google Scholar

  • 30.

    , W. P. Gates, H. T. Wilkinson, J. W. Stucki. Clays Clay Miner. 41, 360 (1993).CrossrefGoogle Scholar

  • 31.

    , P. Komadel, J. Madejova, J. W. Stucki. Clays Clay Miner. 43, 105 (1995).CrossrefGoogle Scholar

  • 32.

    J. W. Stucki, C. B. Roth. Soil Sci. Soc. Am. J. 41, 808 (1977).Google Scholar

  • 33.

    , P. R. Lear, J. W. Stucki. Clays Clay Miner. 33, 539 (1985).CrossrefGoogle Scholar

  • 34.

    , O. Ballet, J. M. D. Coey. Phys. Chem. Miner. 8, 218 (1982).CrossrefGoogle Scholar

  • 35.

    , P. R. Lear, J. W. Stucki. Clays Clay Miner. 35, 373 (1987).CrossrefGoogle Scholar

  • 36.

    , P. R. Lear, J. W. Stucki. Clay Miner. 25, 313 (1990).CrossrefGoogle Scholar

  • 37.

    , P. Komadel, P. R. Lear, J. W. Stucki. Clays Clay Miner. 38, 203 (1990).CrossrefGoogle Scholar

  • 38.

    , R. Schuette, B. A. Goodman, J. W. Stucki. Phys. Chem. Miner. 27, 251 (2000).CrossrefGoogle Scholar

  • 39.

    , P. Komadel, J. Madejova, J. W. Stucki. Appl. Clay Sci. 34, 88 (2006).CrossrefGoogle Scholar

  • 40.

    , O. P. Mehra, M. L. Jackson. Clays Clay Miner. 7, 317 (1958).CrossrefGoogle Scholar

About the article

Published Online: 2009-07-24

Published in Print: 2009-07-24


Citation Information: Pure and Applied Chemistry, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-08-11-16.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Javiera Cervini-Silva, Antonio Nieto Camacho, Eduardo Palacios, Paz del Angel, Martin Pentrak, Linda Pentrakova, Stephan Kaufhold, Kristian Ufer, María Teresa Ramírez-Apan, Virginia Gómez-Vidales, Daniela Rodríguez Montaño, Ascención Montoya, Joseph W. Stucki, and Benny K.G. Theng
Applied Clay Science, 2015
[2]
Deng Liu, Hailiang Dong, Hongmei Wang, and Linduo Zhao
Chemical Geology, 2015, Volume 406, Page 25
[3]
Linduo Zhao, Hailiang Dong, Ravi K. Kukkadapu, Qiang Zeng, Richard E. Edelmann, Martin Pentrák, and Abinash Agrawal
Environmental Science & Technology, 2015, Volume 49, Number 9, Page 5493
[4]
Fubo Luan, Christopher A. Gorski, and William D. Burgos
Environmental Science & Technology, 2015, Volume 49, Number 6, Page 3557
[5]
Anke Neumann, Lingling Wu, Weiqiang Li, Brian L. Beard, Clark M. Johnson, Kevin M. Rosso, Andrew J. Frierdich, and Michelle M. Scherer
Environmental Science & Technology, 2015, Volume 49, Number 5, Page 2786
[6]
Fubo Luan, Yan Liu, Aron M. Griffin, Christopher A. Gorski, and William D. Burgos
Environmental Science & Technology, 2015, Volume 49, Number 3, Page 1418
[7]
Wei Li, Sunendra R. Joshi, Guangjin Hou, David J. Burdige, Donald L. Sparks, and Deb P. Jaisi
Environmental Science & Technology, 2015, Volume 49, Number 1, Page 203
[8]
Yan Liu, Fubo Luan, and William D. Burgos
Chemical Geology, 2014, Volume 383, Page 100
[9]
Fubo Luan, Christopher A. Gorski, and William D. Burgos
Environmental Science & Technology, 2014, Volume 48, Number 5, Page 2750
[10]
Christopher A. Gorski, Laura E. Klüpfel, Andreas Voegelin, Michael Sander, and Thomas B. Hofstetter
Environmental Science & Technology, 2013, Volume 47, Number 23, Page 13477
[11]
Vitaly Alexandrov and Kevin M. Rosso
The Journal of Physical Chemistry C, 2013, Volume 117, Number 44, Page 22880
[12]
Deng Liu, Hailiang Dong, Linduo Zhao, and Hongmei Wang
Geomicrobiology Journal, 2014, Volume 31, Number 1, Page 53
[13]
Patricia M. Fox, James A. Davis, Ravi Kukkadapu, David M. Singer, John Bargar, and Kenneth H. Williams
Geochimica et Cosmochimica Acta, 2013, Volume 117, Page 266
[14]
Anke Neumann, Tyler L. Olson, and Michelle M. Scherer
Environmental Science & Technology, 2013, Page 130321155048009
[15]
Christopher A. Gorski, Laura Klüpfel, Andreas Voegelin, Michael Sander, and Thomas B. Hofstetter
Environmental Science & Technology, 2012, Volume 46, Number 17, Page 9369
[16]
T.S. Peretyazhko, J.M. Zachara, R.K. Kukkadapu, S.M. Heald, I.V. Kutnyakov, C.T. Resch, B.W. Arey, C.M. Wang, L. Kovarik, J.L. Phillips, and D.A. Moore
Geochimica et Cosmochimica Acta, 2012, Volume 92, Page 48
[17]
D. LIU, H. DONG, M. E. BISHOP, J. ZHANG, H. WANG, S. XIE, S. WANG, L. HUANG, and D. D. EBERL
Geobiology, 2012, Volume 10, Number 2, Page 150
[18]
Junjie Yang, Ravi K. Kukkadapu, Hailiang Dong, Evgenya S. Shelobolina, Jing Zhang, and Jinwook Kim
Chemical Geology, 2012, Volume 291, Page 206
[19]
Michael E. Bishop, Hailiang Dong, Ravi K. Kukkadapu, Chongxuan Liu, and Richard E. Edelmann
Geochimica et Cosmochimica Acta, 2011, Volume 75, Number 18, Page 5229
[20]
Joseph W. Stucki
Comptes Rendus Geoscience, 2011, Volume 343, Number 2-3, Page 199
[21]
Anke Neumann, Sabine Petit, and Thomas B. Hofstetter
Geochimica et Cosmochimica Acta, 2011, Volume 75, Number 9, Page 2336

Comments (0)

Please log in or register to comment.
Log in