Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 81, Issue 9

Issues

Thermodynamics of trivalent actinides and neodymium in NaCl, MgCl2, and CaCl2 solutions: Solubility, hydrolysis, and ternary Ca-M(III)-OH complexes

Volker Neck
  • Corresponding author
  • Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung, P.O. Box 3640, D-76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcus Altmaier
  • Corresponding author
  • Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung, P.O. Box 3640, D-76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Rabung
  • Corresponding author
  • Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung, P.O. Box 3640, D-76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Johannes Lützenkirchen
  • Corresponding author
  • Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung, P.O. Box 3640, D-76021 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Fanghänel
  • Corresponding author
  • European Commission, JRC, Institute for Transuranium Elements, P.O. Box 2340, D-76125 Karlsruhe, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-08-04 | DOI: https://doi.org/10.1351/PAC-CON-08-09-05

Known data on the solubility of Am(OH)3(s) and the hydrolysis of Am(III) and Cm(III), additional information from an extensive solubility study with Nd(OH)3(s) in NaCl, MgCl2, and CaCl2 media of various ionic strengths and spectroscopic (time-resolved laser fluorescence spectroscopy, TRLFS) data for Cm(III) in alkaline CaCl2 solutions are used to evaluate a comprehensive set of standard-state equilibrium constants and ion interaction parameters for the specific ion interaction theory (SIT) and Pitzer equations at 25 °C. The thermodynamic model takes into account the analogous solubility and hydrolysis behavior of trivalent actinides and Nd(III) and covers the entire pH range in dilute to concentrated NaCl, MgCl2, and CaCl2 solutions. In alkali chloride/hydroxide solutions, the formation of the tetrahydroxide complex M(OH)4 requires OH concentration above 3 mol l–1, whereas in alkaline CaCl2 solutions (at pHc < 12) M(III) complexes with four and six hydroxide ligands are formed. Similar as the recently detected ternary Ca–M(IV)–OH complexes Ca3[Zr(OH)6]4+ and Ca4[Th(OH)8]4+, these complexes are stabilized by the association of Ca2+ ions. The solubility and hydrolysis of Am(III), Cm(III), and Nd(III) in both Ca-free and -containing solutions is consistently described with a model including the ternary Ca–M(III)–OH complexes Ca[M(OH)3]2+, Ca2[M(OH)4]3+, and Ca3[M(OH)6]3+.

Keywords: americium; curium; hydrolysis; neodymium; Pitzer model; plutonium; SIT; solubility; ternary complexes

Conference

International Symposium on Solubility Phenomena and Related Equilibrium Processes (ISSP-13), International Symposium on Solubility Phenomena, ISSP, Solubility Phenomena, 13th, Dublin, Ireland, 2008-07-27–2008-07-31

References

  • 1.

    , M. Altmaier, V. Metz, V. Neck, R. Muller, Th. Fanghanel. Geochim. Cosmochim. Acta 67, 3595 (2003).CrossrefGoogle Scholar

  • 2.

    , C. F. Harvie, N. Moller, J. H. Weare. Geochim. Cosmochim. Acta 48, 723 (1984).CrossrefGoogle Scholar

  • 3.

    I. Grenthe, J. Fuger, R. J. M. Konings, R. J. Lemire, A. B. Muller, C. Nguyen-Trung, H. Wanner (OECD, NEA). Chemical Thermodynamics Vol. 1, Chemical Thermodynamics of Uranium, Elsevier, North-Holland, Amsterdam (1992).Google Scholar

  • 4.

    R. J. Silva, G. Bidoglio, M. H. Rand, P. B. Robouch, H. Wanner, I. Puigdomenech (OECD, NEA). Chemical Thermodynamics, Vol. 2, Chemical Thermodynamics of Americium, Elsevier, North-Holland, Amsterdam (1995).Google Scholar

  • 5.

    R. J. Lemire, J. Fuger, H. Nitsche, P. Potter, M. H. Rand, J. Rydberg, K. Spahiu, J. C. Sullivan, W. J. Ullman, P. Vitorge, H. Wanner (OECD, NEA). Chemical Thermodynamics, Vol. 4, Chemical Thermodynamics of Neptunium and Plutonium, Elsevier, North-Holland, Amsterdam (2001).Google Scholar

  • 6.

    R. Guillaumont, Th. Fanghanel, J. Fuger, I. Grenthe, V. Neck, D. A. Palmer, M. H. Rand (OECD, NEA). Chemical Thermodynamics, Vol. 5, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technetium, Elsevier, Amsterdam (2003).Google Scholar

  • 7.

    M. H. Rand, J. Fuger, I. Grenthe, V. Neck, D. Rai. Chemical Thermodynamics, Vol. 11, Chemical Thermodynamics of Thorium, OECD Nuclear Energy Agency, Paris (2008).Google Scholar

  • 8.

    , V. Neck, M. Altmaier, Th. Fanghanel. Comptes Rendus Chimie (France) 10, 959 (2007).CrossrefGoogle Scholar

  • 9.

    , B. Brendebach, M. Altmaier, J. Rothe, V. Neck, M. A. Denecke. Inorg. Chem. 46, 6804 (2007).CrossrefGoogle Scholar

  • 10.

    , M. Altmaier, V. Neck, Th. Fanghanel. Radiochim. Acta 96, 541 (2008).CrossrefGoogle Scholar

  • 11.

    , Th. Rabung, M. Altmaier, V. Neck, Th. Fanghanel. Radiochim. Acta 96, 551 (2008).CrossrefGoogle Scholar

  • 12.

    , M. Altmaier, V. Neck, J. Lutzenkirchen, Th. Fanghanel. Proc. of the Conf. Plutonium Futures: The Science 2008, Dijon, France (2008). Radiochim. Acta 97, 187 (2009).CrossrefGoogle Scholar

  • 13.

    L. Ciavatta. Ann. Chim. (Rome) 70, 551 (1980).Google Scholar

  • 14.

    K. S. Pitzer. Activity Coefficients in Electrolyte Solutions, CRC Press, Boca Raton (1991).Web of ScienceGoogle Scholar

  • 15.

    C. F. Baes Jr., R. E. Mesmer. The Hydrolysis of Cations, John Wiley, New York (1976).Google Scholar

  • 16.

    G. R. Choppin, E. N. Rizkalla. In Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner Jr., L. Eyring (Eds.), 18, pp. 559590, North Holland, Amsterdam (1994).Google Scholar

  • 17.

    , D. Shannon. Acta Crystallogr., Sect. A 32, 751 (1976).CrossrefGoogle Scholar

  • 18.

    V. Neck, Th. Fanghanel, J. I. Kim. Report FZKA 6110, Karlsruhe (1998).Google Scholar

  • 19.

    , Th. Fanghanel, J. I. Kim. J. Alloys Compd. 271273, 728 (1998).CrossrefGoogle Scholar

  • 20.

    I. Grenthe, I. Puigdomenech. Modelling in Aquatic Chemistry, OECD, Nuclear Energy Agency, Paris (1997).Google Scholar

  • 21.

    A. R. Felmy, D. Rai, J. A. Schramke, J. L. Ryan. Radiochim. Acta 48, 29 (1989).Google Scholar

  • 22.

    Th. Konnecke, Th. Fanghanel, J. I. Kim. Radiochim. Acta 76, 131 (1997).Google Scholar

  • 23.

    R. J. Silva. Report LBL-15055, Lawrence Berkeley Laboratory, Berkeley (1982).Google Scholar

  • 24.

    N. M. Edelstein, J. Bucher, R. J. Silva, H. Nitsche. Report ONWI-399, LBL-15055, Lawrence Berkeley Laboratory, Berkeley (1983).Google Scholar

  • 25.

    H. Nitsche, N. M. Edelstein. Radiochim. Acta 39, 23 (1985).Google Scholar

  • 26.

    S. Stadler, J. I. Kim. Radiochim. Acta 4445, 39 (1988).Google Scholar

  • 27.

    D. Rai, R. G. Strickert, D. A. Moore, J. L. Ryan. Radiochim. Acta 33, 201 (1983).Google Scholar

  • 28.

    W. Runde, J. I. Kim. Report RCM 01094, Technische Universitat Munchen (1994).Google Scholar

  • 29.

    P. Vitorge, P. Tran-The. Report EUR 13664, Commission of the European Communities, Luxembourg (1991).Google Scholar

  • 30.

    , Th. Fanghanel, J. I. Kim, R. Klenze, Y. Kato. J. Alloys Compd. 225, 308 (1995).CrossrefGoogle Scholar

  • 31.

    Th. Fanghanel, J. I. Kim, P. Paviet, R. Klenze, W. Hauser. Radiochim. Acta 6667, 81 (1994).Google Scholar

  • 32.

    H. Wimmer, R. Klenze, J. I. Kim. Radiochim. Acta 56, 79 (1992).Google Scholar

  • 33.

    , Z. Wang, A. R. Felmy, Y. X. Xia, M. J. Mason. Radiochim. Acta 91, 329 (2003).CrossrefGoogle Scholar

  • 34.

    , J. Tits, T. Stumpf, Th. Rabung, E. Wieland, Th. Fanghanel. Environ. Sci. Technol. 37, 3568 (2003).CrossrefGoogle Scholar

  • 35.

    I. I. Diakonov, B. R. Tagirov, K. V. Ragnarsdottir. Radiochim. Acta 81, 107 (1998).Google Scholar

  • 36.

    , I. I. Diakonov, K. V. Ragnarsdottir, B. R. Tagirov. Chem. Geol. 151, 327 (1998).CrossrefGoogle Scholar

  • 37.

    , J.-I. Yun, T. Bundschuh, V. Neck, J.-I. Kim. Appl. Spectrosc. 55, 273 (2001).CrossrefGoogle Scholar

  • 38.

    W. Hummel, U. Berner, E. Curti, F. J. Pearson, T. Thoenen. Nagra/PSI Chemical Thermodynamic Data Base 01/01, Universal Publishers, Parkland, FL, USA (2002).Google Scholar

  • 39.

    , R. S. Tobias, A. B. Garrett. J. Am. Chem. Soc. 80, 3532 (1958).CrossrefGoogle Scholar

  • 40.

    B. N. Ivanov-Emin, E. N. Sifarova, M. M. Fisher, V. M. Kampos. Russ. J. Inorg. Chem. 11, 258 (1966).Google Scholar

  • 41.

    L. Rao, D. Rai, A. R. Felmy. Radiochim. Acta 72, 151 (1996).Google Scholar

About the article

Published Online: 2009-08-04

Published in Print: 2009-08-04


Citation Information: Pure and Applied Chemistry, Volume 81, Issue 9, Pages 1555–1568, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-08-09-05.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Aaron Brewer, Alice Dohnalkova, Vaithiyalingam Shutthanandan, Libor Kovarik, Elliot Chang, April M. Sawvel, Harris E. Mason, David Reed, Congwang Ye, William F. Hynes, Laura N. Lammers, Dan M. Park, and Yongqin Jiao
Environmental Science & Technology, 2019
[2]
Nikoleta Morelová, Nicolas Finck, Johannes Lützenkirchen, Dieter Schild, Kathy Dardenne, and Horst Geckeis
Journal of Colloid and Interface Science, 2019
[3]
Agost Tasi, Xavier Gaona, David Fellhauer, Melanie Böttle, Jörg Rothe, Kathy Dardenne, Dieter Schild, Mireia Grivé, Elisenda Colàs, Jordi Bruno, Klas Källström, Marcus Altmaier, and Horst Geckeis
Radiochimica Acta, 2018, Volume 106, Number 4, Page 259
[4]
J.-Y. Lee, S. Amayri, V. Montoya, D. Fellhauer, X. Gaona, and M. Altmaier
Applied Geochemistry, 2019, Page 104374
[5]
B. Kienzler, A. Loida, E. González-Robles, N. Müller, and V. Metz
MRS Proceedings, 2014, Volume 1665, Page 233
[6]
A. Tasi, X. Gaona, D. Fellhauer, M. Böttle, J. Rothe, K. Dardenne, R. Polly, M. Grivé, E. Colàs, J. Bruno, K. Källstrom, M. Altmaier, and H. Geckeis
Applied Geochemistry, 2018
[7]
Shuangchen Ma, Jin Chai, Kai Wu, Zhongcheng Wan, Yajun Xiang, Jingrui Zhang, and Zixuan Fan
Journal of Industrial and Engineering Chemistry, 2018
[8]
A. Tasi, X. Gaona, D. Fellhauer, M. Böttle, J. Rothe, K. Dardenne, R. Polly, M. Grivé, E. Colàs, J. Bruno, K. Källström, M. Altmaier, and H. Geckeis
Applied Geochemistry, 2018
[9]
Vladimir G. Petrov, David Fellhauer, Xavier Gaona, Kathy Dardenne, Jörg Rothe, Stepan N. Kalmykov, and Marcus Altmaier
Radiochimica Acta, 2017, Volume 105, Number 1, Page 1
[10]
A. Baumann, E. Yalçıntaş, X. Gaona, R. Polly, K. Dardenne, T. Prüßmann, J. Rothe, M. Altmaier, and H. Geckeis
Dalton Transactions, 2018
[11]
David Fellhauer, Xavier Gaona, Jörg Rothe, Marcus Altmaier, and Thomas Fanghänel
Monatshefte für Chemie - Chemical Monthly, 2017
[13]
Rémi Marsac, Florent Réal, Nidhu Lal Banik, Mathieu Pédrot, Olivier Pourret, and Valérie Vallet
Dalton Trans., 2017
[15]
Marcus Altmaier, Ezgi Yalçıntaş, Xavier Gaona, Volker Neck, Regina Müller, Martina Schlieker, and Thomas Fanghänel
The Journal of Chemical Thermodynamics, 2017, Volume 114, Page 2
[16]
Bence Kutus, Norbert Varga, Gábor Peintler, Alexandru Lupan, Amr A. A. Attia, István Pálinkó, and Pál Sipos
Dalton Trans., 2017, Volume 46, Number 18, Page 6049
[17]
Peiming Wang, Andrzej Anderko, Jerzy J. Kosinski, Ronald D. Springer, and Malgorzata M. Lencka
Journal of Solution Chemistry, 2017, Volume 46, Number 3, Page 521
[18]
Ezgi Yalçıntaş, Xavier Gaona, Marcus Altmaier, Kathy Dardenne, Robert Polly, and Horst Geckeis
Dalton Trans., 2016, Volume 45, Number 21, Page 8916
[19]
Katja Hinz, Marcus Altmaier, Xavier Gaona, Thomas Rabung, Dieter Schild, Michael Richmann, Donald T. Reed, Evgeny V. Alekseev, and Horst Geckeis
New J. Chem., 2015, Volume 39, Number 2, Page 849
[20]
Rémi Marsac, Mélanie Davranche, Guillaume Morin, Yoshio Takahashi, Gérard Gruau, Nicolas Briant, and Aline Dia
Chemical Geology, 2015, Volume 396, Page 218
[21]
Andreas Schnurr, Rémi Marsac, Thomas Rabung, Johannes Lützenkirchen, and Horst Geckeis
Geochimica et Cosmochimica Acta, 2015, Volume 151, Page 192
[22]
V. P. Shilov and V. B. Nikolaevskii
Radiochemistry, 2014, Volume 56, Number 4, Page 339
[23]
Keisuke Fukushi, Yusuke Hasegawa, Koushi Maeda, Yusuke Aoi, Akihiro Tamura, Shoji Arai, Yuhei Yamamoto, Daisuke Aosai, and Takashi Mizuno
Environmental Science & Technology, 2013, Volume 47, Number 22, Page 12811
[24]
Akira Kitamura, Kenso Fujiwara, Morihiro Mihara, Mark Cowper, and Gento Kamei
Journal of Radioanalytical and Nuclear Chemistry, 2013, Volume 298, Number 1, Page 485
[25]
Daniel R. Fröhlich, Andrej Skerencak-Frech, Marie-Louise K. Morkos, and Petra J. Panak
New Journal of Chemistry, 2013, Volume 37, Number 5, Page 1520
[26]
Marcus Altmaier, Xavier Gaona, and Thomas Fanghänel
Chemical Reviews, 2013, Volume 113, Number 2, Page 901
[27]
Xavier Gaona, Jan Tits, Kathy Dardenne, Xiaolan Liu, Jörg Rothe, Melissa A. Denecke, Erich Wieland, and Marcus Altmaier
Radiochimica Acta, 2012, Volume 100, Number 10, Page 759
[28]
Johannes Lützenkirchen
Applied Geochemistry, 2012, Volume 27, Number 2, Page 427

Comments (0)

Please log in or register to comment.
Log in