Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 81, Issue 9

Issues

Photochemistry of anthocyanins and their biological role in plant tissues

Frank H. Quina
  • Corresponding author
  • Instituto de Química, Universidade de São Paulo, CP 26790, São Paulo 05513-970, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paulo F. Moreira Jr.
  • Corresponding author
  • Instituto de Química, Universidade de São Paulo, CP 26790, São Paulo 05513-970, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carolina Vautier-Giongo
  • Corresponding author
  • Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Daniel Rettori
  • Corresponding author
  • Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, SP, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rita F. Rodrigues
  • Corresponding author
  • Centro de Química Estrutural, Instituto Superior Técnico, Technical University of Lisbon, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adilson A. Freitas
  • Corresponding author
  • Centro de Química Estrutural, Instituto Superior Técnico, Technical University of Lisbon, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Palmira F. Silva
  • Corresponding author
  • Centro de Química Estrutural, Instituto Superior Técnico, Technical University of Lisbon, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ António L. Maçanita
  • Corresponding author
  • Centro de Química Estrutural, Instituto Superior Técnico, Technical University of Lisbon, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-08-19 | DOI: https://doi.org/10.1351/PAC-CON-08-09-28

Anthocyanins, the major red, purple, and blue pigments of plants, absorb visible as well as UV radiation and are effective antioxidants and scavengers of active oxygen species. In plant leaves, one of the functional roles proposed for anthocyanins is protection of the photosynthetic apparatus from the effects of excess incident visible or UV-B radiation and photooxidative stress. In essence, a photoprotective role requires that the excited singlet states of both complexed and uncomplexed anthocyanins deactivate back to the ground state so quickly that intersystem crossing, photoreaction, and diffusion-controlled quenching processes cannot compete. Studies of the photochemical properties of synthetic analogs of anthocyanins and of several naturally occurring anthocyanins show that this is indeed the case, uncomplexed anthocyanins decaying back to the ground state via fast (subnanosecond) excited-state proton transfer (ESPT) and anthocyanin-copigment complexes by fast (subpicosecond) charge-transfer-mediated internal conversion.

Keywords: anthocyanins; charge transfer; copigmentation; fluorescence; proton transfer

Conference

IUPAC Symposium on Photochemistry, International Symposium on Photochemistry, PHOTO, Photochemistry, XXIInd, Gothenburg, Sweden, 2008-07-28–2008-08-01

References

  • 1.

    , P. Bridle, C. F. Timberlake. Food Chem. 58, 103 (1997).CrossrefGoogle Scholar

  • 2.

    R. Brouillard, P. Figueiredo, M. Elhabiri, O. Dangles. In Phytochemistry of Fruit and Vegetables, F. A. Tomas-Barberan, R. J. Robins (Eds.), pp. 2949, Clarendon Press, Oxford (1997).Google Scholar

  • 3.

    , (a) C. A. Williams, R. J. Grayer. Nat. Prod. Rep. 21, 539 (2004);CrossrefGoogle Scholar

  • 3.

    , (b) N. C. Veitch, R. J. Grayer. Nat. Prod. Rep. 25, 555 (2008).CrossrefGoogle Scholar

  • 4.

    O. M. Andersen, M. Jordheim. In Flavenoids, Chemistry, Biochemistry and Applications, O. M. Andersen, K. R. Markham (Eds.), pp. 471551, CRC Press, Boca Raton (2006).Google Scholar

  • 5.

    , K. L. Hale, H. A. Tufan, I. J. Pickering, G. N. George, N. Terry, M. Pilon, E. A. H. Pilon-Smits. Physiol. Plant. 116, 351 (2002).CrossrefGoogle Scholar

  • 6.

    , K. Takeda, A. Osakabe, S. Saito, D. Furuyama, A. Tomita, Y. Kojima, M. Yamadera, M. Sakuta. Phytochemistry 66, 1607 (2005).CrossrefGoogle Scholar

  • 7.

    , K. Yoshida, S. D. Kitahara, D. Ito, T. Kondo. Phytochemistry 67, 992 (2006).CrossrefGoogle Scholar

  • 8.

    K. Takeda. Proc. Jpn. Acad., Ser. B 82, 142 (2006).CrossrefGoogle Scholar

  • 9.

    M. Wheldale. The Anthocyanin Pigments of Plants, Cambridge University Press, Cambridge (1916).Google Scholar

  • 10.

    K. S. Gould, D. W. Lee. Anthocyanins in Leaves (Adv. Bot. Res., 37), Academic Press, New York (2002).Google Scholar

  • 11.

    , W. J. Steyn, S. J. E. Wand, D. M. Holcroft, G. Jacobs. New Phytol. 155, 349 (2002).CrossrefGoogle Scholar

  • 12.

    , K. S. Gould. J. Biomed. Biotechnol. 2004, 314 (2004).CrossrefGoogle Scholar

  • 13.

    A. A. Lima, E. M. Sussuchi, W. F. Giovani. Croat. Chem. Acta 80, 29 (2007).Google Scholar

  • 14.

    , K. S. Gould, J. McKelvie, K. R. Markham. Plant Cell Environ. 25, 1261 (2002).CrossrefGoogle Scholar

  • 15.

    , W. A. Hoch, E. L. Singsaas, B. H. McCown. Plant Physiol. 133, 1296 (2003).CrossrefGoogle Scholar

  • 16.

    , J. Keskitalo, G. Bergquist, P. Gardestrom, S. Jansson. Plant Physiol. 139, 1635 (2005).CrossrefGoogle Scholar

  • 17.

    , T. S. Feild, D. W. Lee, N. M. Holbrook. Plant Physiol. 127, 566 (2001).CrossrefGoogle Scholar

  • 18.

    , D. C. Close, C. L. Beadle. Bot. Rev. 69, 149 (2003).CrossrefGoogle Scholar

  • 19.

    , J. C. Lima, C. Vautier-Giongo, E. Melo, A. Lopes, F. H. Quina, A. L. Macanita. J. Phys. Chem. A 106, 5851 (2002).CrossrefGoogle Scholar

  • 20.

    A. A. Freitas, K. Shimizu, L. G. Dias, F. H. Quina. J. Braz. Chem. Soc. 18, 1537 (2007).Google Scholar

  • 21.

    , J. C. Lima, I. Abreu, M. H. Santos, R. Brouillard, A. L. Macanita. Chem. Phys. Lett. 298, 189 (1998).CrossrefGoogle Scholar

  • 22.

    M. Maestri, F. Pina, A. Roque, P. Passaniti. J. Photochem. Photobiol., A 137, 21 (2000).Google Scholar

  • 23.

    F. H. Quina, A. A. Freitas, A. Macanita, P. F. Silva, J. C. Lima. Spectrum 19, 18 (2006).Google Scholar

  • 24.

    , L. Paulo, A. A. Freitas, P. F. Silva, K. Shimizu, F. H. Quina, A. L. Macanita. J. Phys. Chem. A 110, 2089 (2006).CrossrefGoogle Scholar

  • 25.

    , A. A. Freitas, L. Paulo, A. L. Macanita, F. H. Quina. Langmuir 22, 7986 (2006).CrossrefGoogle Scholar

  • 26.

    , A. C. Fernandes, C. C. Romao, C. P. Rosa, V. P. Vieira, A. Lopes, P. F. Silva, A. L. Macanita. Eur. J. Org. Chem. 23, 4877 (2004).CrossrefGoogle Scholar

  • 27.

    , L. Giestas, C. Yihwa, J. C. Lima, C. Vautier-Giongo, A. Lopes, F. H. Quina, A. L. Macanita. J. Phys. Chem. A 107, 3263 (2003).CrossrefGoogle Scholar

  • 28.

    , R. Rodrigues, C. Vautier-Giongo, P. F. Silva, A. C. Fernandes, R. Cruz, A. L. Macanita, F. H. Quina. Langmuir 22, 933 (2006).CrossrefGoogle Scholar

  • 29.

    A. A. Freitas, F. H. Quina, A. C. Fernandes, A. L. Macanita. Submitted for publication.Google Scholar

  • 30.

    P. F. Silva, J. C. Lima, F. H. Quina, A. L. Macanita. J. Phys. Chem. A 107, 3263 (2004).Google Scholar

  • 31.

    , A. L. Macanita, P. F. Moreira Jr., J. C. Lima, F. H. Quina, C. Yihwa, C. Vautier-Giongo. J. Phys. Chem. A 106, 1248 (2002).CrossrefGoogle Scholar

  • 32.

    , P. F. Moreira Jr., L. Giestas, C. Yihwa, C. Vautier-Giongo, F. H. Quina, A. L. Macanita, J. C. Lima. J. Phys. Chem. A 107, 4203 (2003).CrossrefGoogle Scholar

  • 33.

    , K. Yoshida, Y. Toyama-Kato, K. Kameda, T. Kondo. Plant Cell Physiol. 44, 262 (2003).CrossrefGoogle Scholar

  • 34.

    , N. J. Cherepy, G. P. Smestad, M. Gratzel, J. Z. Zhang. J. Phys. Chem. B 101, 9342 (1997).CrossrefGoogle Scholar

  • 35.

    A. A. Lima, E. M. Sussuchi, W. F. Giovani. Croat. Chem. Acta 80, 29 (2007).Google Scholar

  • 36.

    , M. Mori, T. Kondo, K. Yoshida. Phytochemistry 69, 3151 (2008).CrossrefGoogle Scholar

  • 37.

    , P. F. Silva, J. C. Lima, A. A. Freitas, K. Shimizu, F. H. Quina, A. L. Macanita. J. Phys. Chem. A 109, 7329 (2005).CrossrefGoogle Scholar

  • 38.

    , M. J. Rein, M. Heinonen. J. Agric. Food Chem. 52, 3106 (2004).CrossrefGoogle Scholar

  • 39.

    , R. Rodrigues, P. F. Silva, K. Shimizu, A. A. Freitas, S. Kovalenko, N. Ernsting, F. H. Quina, A. Macanita. Chem.Eur. J. 15, 1397 (2009)CrossrefGoogle Scholar

  • 40.

    , M. A. Miranda, H. Garcia. Chem. Rev. 94, 1063 (1994).CrossrefGoogle Scholar

About the article

Published Online: 2009-08-19

Published in Print: 2009-08-19


Citation Information: Pure and Applied Chemistry, Volume 81, Issue 9, Pages 1687–1694, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-08-09-28.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Alfonso Alejo-Armijo, Nuno Basílio, Adilson A. Freitas, António L. Maçanita, João C. Lima, A. Jorge Parola, and Fernando Pina
Physical Chemistry Chemical Physics, 2019
[2]
Amna Aqdas, Farhan Siddique, Reed Nieman, Frank H. Quina, and Adelia J. A. Aquino
Photochemistry and Photobiology, 2019
[3]
Nawaporn Onkokesung, Michael Reichelt, Arjen van Doorn, Robert C. Schuurink, Joop J.A. van Loon, and Marcel Dicke
Journal of Experimental Botany, 2014, Volume 65, Number 8, Page 2203
[4]
Monika Cioch, Paweł Satora, Magdalena Skotniczny, Dorota Semik-Szczurak, and Tomasz Tarko
Polish Journal of Microbiology, 2017, Volume 66, Number 4, Page 463
[5]
Adilson A. Freitas, Cassio Pacheco Silva, Gustavo Thalmer M. Silva, António L. Maçanita, and Frank H. Quina
Pure and Applied Chemistry, 2017, Volume 89, Number 12, Page 1761
[6]
Violaine Gérard, Emel Ay, Fabrice Morlet-Savary, Bernadette Graff, Christophe Galopin, Thaddao Ogren, William Mutilangi, and Jacques Lalevée
Journal of Agricultural and Food Chemistry, 2019, Volume 67, Number 19, Page 5647
[7]
Xue Li, Farhan Siddique, Gustavo T. M. Silva, Frank H. Quina, Hans Lischka, and Adelia J. A. Aquino
New Journal of Chemistry, 2019, Volume 43, Number 19, Page 7532
[8]
Farhan Siddique, Cassio P. Silva, Gustavo T. Medeiros Silva, Hans Lischka, Frank H. Quina, and Adelia J. A. Aquino
Photochemical & Photobiological Sciences, 2019
[9]
Gustavo Thalmer M. Silva, Suma S. Thomas, Cassio Pacheco Silva, Jan C. Schlothauer, Mauricio S. Baptista, Adilson A. Freitas, Cornelia Bohne, and Frank H. Quina
Photochemistry and Photobiology, 2018
[10]
Adilson A. Freitas, Cassio Pacheco Silva, Gustavo Thalmer M. Silva, António L. Maçanita, and Frank H. Quina
Photochemistry and Photobiology, 2018
[11]
Thorben Detering, Diana Linke, Sébastien Gounel, Nicolas Mano, and Ralf G. Berger
Mycological Progress, 2018
[12]
Cassio Pacheco da Silva, Renan Moraes Pioli, Liu Liu, Shasha Zheng, Mengjiao Zhang, Gustavo Thalmer de Medeiros Silva, Vânia Maria Teixeira Carneiro, and Frank H. Quina
ACS Omega, 2018, Volume 3, Number 1, Page 954
[13]
Julia Martín, Enrique Jacobo Díaz Montaña, and Agustin G. Asuero
Critical Reviews in Analytical Chemistry, 2017, Page 0
[14]
A. Demirbas, K. Groszman, M. Pazmiño-Hernandez, D. C. Vanegas, B. Welt, J. A. Hondred, N. T. Garland, J. C. Claussen, and E. S. McLamore
Biotechnology Progress, 2017
[15]
Deepika Thakur, Ashay Jain, Gargi Ghoshal, U. S. Shivhare, and O. P. Katare
Journal of Pharmaceutical Investigation, 2017, Volume 47, Number 5, Page 413
[16]
Andrew J. Pinsonneault, Tim R. Moore, Nigel T. Roulet, and Jean-François Lapierre
Ecosystems, 2016, Volume 19, Number 6, Page 1023
[17]
Barbara Held, Hao Tang, Palani Natarajan, Cassio Pacheco da Silva, Volnir de Oliveira Silva, Cornelia Bohne, and Frank H. Quina
Photochem. Photobiol. Sci., 2016, Volume 15, Number 6, Page 752
[18]
M. Lemos, Katarína Sárniková, Francesca Bot, Monica Anese, and Graham Hungerford
Biosensors, 2015, Volume 5, Number 3, Page 367
[19]
Volnir O. Silva, Adilson A. Freitas, António L. Maçanita, and Frank H. Quina
Journal of Physical Organic Chemistry, 2016, Volume 29, Number 11, Page 594
[20]
[21]
A. Polášková, J. Spilková, A. Matějíček, and H. Studená
Acta Facultatis Pharmaceuticae Universitatis Comenianae, 2015, Volume 62, Number s9
[22]
Giuseppe Calogero, Antonino Bartolotta, Gaetano Di Marco, Aldo Di Carlo, and Francesco Bonaccorso
Chem. Soc. Rev., 2015, Volume 44, Number 10, Page 3244
[23]
A.P. Vale, J. Santos, N. Melia, V. Peixoto, N.V. Brito, and M. Beatriz P.P. Oliveira
Food Control, 2015, Volume 55, Page 248
[24]
[25]
Kevin Huvaere and Leif H Skibsted
Journal of the Science of Food and Agriculture, 2015, Volume 95, Number 1, Page 20
[26]
Damien Costa, Adelino M. Galvão, Roberto E. Di Paolo, Adilson A. Freitas, João C. Lima, Frank H. Quina, and António L. Maçanita
Tetrahedron, 2015, Volume 71, Number 20, Page 3157
[27]
Judita Puišo, Dovilė Jonkuvienė, Irena Mačionienė, Joana Šalomskienė, Ina Jasutienė, and Rokas Kondrotas
Colloids and Surfaces B: Biointerfaces, 2014, Volume 121, Page 214
[28]
Adilson A. Freitas, Frank H. Quina, and António A. L. Maçanita
The Journal of Physical Chemistry A, 2014, Volume 118, Number 45, Page 10448
[29]
Vladimir Lysenko and Tatyana Varduny
Scientific Reports, 2013, Volume 3, Number 1
[30]
Raymond Ziessel, Gilles Ulrich, Alexandre Haefele, and Anthony Harriman
Journal of the American Chemical Society, 2013, Volume 135, Number 30, Page 11330
[31]
Adilson A. Freitas, António A. L. Maçanita, and Frank H. Quina
Photochemical & Photobiological Sciences, 2013, Volume 12, Number 5, Page 902
[32]
Ron Simkovitch, Shay Shomer, Rinat Gepshtein, Doron Shabat, and Dan Huppert
The Journal of Physical Chemistry A, 2013, Volume 117, Number 19, Page 3925
[33]
Ron Simkovitch, Naama Karton-Lifshin, Shay Shomer, Doron Shabat, and Dan Huppert
The Journal of Physical Chemistry A, 2013, Volume 117, Number 16, Page 3405
[34]
Ron Simkovitch, Einat Kisin-Finfer, Shay Shomer, Rinat Gepshtein, Doron Shabat, and Dan Huppert
Journal of Photochemistry and Photobiology A: Chemistry, 2013, Volume 254, Page 45
[35]
María José Navas, Ana María Jiménez-Moreno, Julia Martín Bueno, Purificación Sáez-Plaza, and Agustin G. Asuero
Critical Reviews in Analytical Chemistry, 2012, Volume 42, Number 4, Page 284
[36]
Elizabeth-Ann Gould, Alexander V. Popov, Laren M. Tolbert, Itay Presiado, Yuval Erez, Dan Huppert, and Kyril M. Solntsev
Physical Chemistry Chemical Physics, 2012, Volume 14, Number 25, Page 8964
[37]
Palmira Ferreira da Silva, Luísa Paulo, Arianna Barbafina, Fausto Elisei, Frank H. Quina, and António L. Maçanita
Chemistry - A European Journal, 2012, Volume 18, Number 12, Page 3736
[38]
M. Adília Lemos, Maryam M. Aliyu, and Graham Hungerford
Innovative Food Science & Emerging Technologies, 2012, Volume 16, Page 61
[39]
Julia Martín Bueno, Purificación Sáez-Plaza, Fernando Ramos-Escudero, Ana Maria Jiménez, Roseane Fett, and Agustin G. Asuero
Critical Reviews in Analytical Chemistry, 2012, Volume 42, Number 2, Page 126
[40]
Naama Karton-Lifshin, Itay Presiado, Yuval Erez, Rinat Gepshtein, Doron Shabat, and Dan Huppert
The Journal of Physical Chemistry A, 2012, Volume 116, Number 1, Page 85

Comments (0)

Please log in or register to comment.
Log in