Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Print
ISSN
0033-4545
See all formats and pricing
More options …
Volume 81, Issue 9

Issues

Surface complexation and proton-promoted dissolution in aqueous apatite systems

Åsa Bengtsson / Staffan Sjöberg
Published Online: 2009-08-19 | DOI: https://doi.org/10.1351/PAC-CON-08-10-02

The dissolution of hydroxyapatite (HAP) and fluorapatite (FAP) has been studied (25 °C, 0.1 M NaCl medium) within the pH ranges 2–11 (FAP) and 4–10 (HAP). A range of techniques has been utilized to achieve understanding in how these two abundant minerals may interact with their natural surroundings (e.g., body fluids and soil environments). Synthetic crystalline HAP and FAP were prepared, and both minerals were found to undergo a phase transformation generated during a dialysis step of the synthetic routes. Surface-deficient layers with the nonstoichiometric compositions Ca8.4(HPO4)1.6(PO4)4.4(OH)0.4 and Ca9(HPO4)2(PO4)4F2 were identified. The equilibrium analysis of experimental solubility data of the two apatite systems was based upon potentiometric titration data, batch experiments, and zeta-potential measurements in combination with information provided by X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The analysis required, besides the two solubility equilibria, the formation of surface protonation/deprotonation reactions, re-adsorption processes involving phosphate and fluoride ions as well as an ion exchange reaction (≡F + H2O ⇋ ≡OH + H+ + F) to fully describe the dissolution characteristics of the two apatite systems. The resulting model also agrees with observations from XPS and solubility data, claiming the formation of CaF2(s) in the most acidic pH range of the FAP system. In addition, calculated isoelectric points (pHiep) are in agreement with values from surface charge measurements showing pHiep (HAP) = 8.1 and pHiep (FAP) = 5.7.

Keywords: fluorapatite; hydroxyapatite; phase transformation; spectroscopy; surface complexation modeling

Conference

International Symposium on Solubility Phenomena and Related Equilibrium Processes (ISSP-13), International Symposium on Solubility Phenomena, ISSP, Solubility Phenomena, 13th, Dublin, Ireland, 2008-07-27–2008-07-31

References

  • 1.

    G. M. Filippelli. Phosphates: Geochemical, Geobiological, and Materials Importance, Vol. 48, M. J. Kohn, J. Rakovan, J. M. Hughes (Eds.), Mineralogical Society of America (2002).Google Scholar

  • 2.

    , R. McDowell, S. Sinjaj, A. Sharpley, E. Frossard. Soil Sci. 166, 365 (2001).CrossrefGoogle Scholar

  • 3.

    , P. H. Moisander, T. F. Steppe, N. S. Hall, J. Kuparinen, H. W. Paerl. Mar. Ecol. Progr. Rep. Ser. 262, 81 (2003).CrossrefGoogle Scholar

  • 4.

    , E. O. Oelkers, E. Valsami-Jones. Elements 2, 83 (2008).CrossrefGoogle Scholar

  • 5.

    , D. L. Jones. Plant Soil 205, 25 (1998).CrossrefGoogle Scholar

  • 6.

    K. A. Gross, C. C. Berndt. In Phosphates: Geochemical, Geobiological, and Materials Importance, Vol. 48, M. J. Kohn, J. Rakovan, J. M. Hughes (Eds.), pp. 631672, Mineralogical Society of America (2002).Google Scholar

  • 7.

    J. C. Elliot. In Phosphates: Geochemical, Geobiological, and Materials Importance, Vol. 48, M. J. Kohn, J. Rakovan, J. M. Hughes (Eds.), pp. 427453, Mineralogical Society of America (2002).Google Scholar

  • 8.

    M. J. Dallemagne, L. J. Richelle. In Biological Mineralization, Vols. 2342, I. Zipkin (Ed.), John Wiley, New York (1973).Google Scholar

  • 9.

    , D. N. Misra. J. Biomed. Mater. Res. 48, 848 (1999).CrossrefGoogle Scholar

  • 10.

    W. E. Brown, T. M. Gregory L. C. Chow. Caries Res. 11, 118 (1977).CrossrefGoogle Scholar

  • 11.

    S. K. Doss. J. Dent. Res. 5, 1067 (1976).Google Scholar

  • 12.

    , A. Bengtsson, A. Shchukarev, P. Persson, S. Sjoberg. Geochim. Cosmochim. Acta 73, 257 (2009).CrossrefGoogle Scholar

  • 13.

    , A. Bengtsson, A Shchukarev, P. Persson, S. Sjoberg. Langmuir 25, 2355 (2009).CrossrefGoogle Scholar

  • 14.

    , E. Hayek, W. Stadlmann. Angew. Chem. 67, 327 (1955).CrossrefGoogle Scholar

  • 15.

    , G. Penel, G. Leroy, C. Rey, B. Sombret, J. P. Huvenne, E. Bres. J. Mater. Sci.: Mater. Med. 8, 271 (1997).CrossrefGoogle Scholar

  • 16.

    , M. Kukura, L. C. Bell, A. M. Posner, J. P. Quirk. J. Phys. Chem. 76, 900 (1972).CrossrefGoogle Scholar

  • 17.

    , P. W. Brown, R. I. Martin. J. Phys. Chem. 103, 1671 (1999).CrossrefGoogle Scholar

  • 18.

    C. Park, P. Fenter, Z. Zhang, L. Cheng, N. C. Sturchio. Am. Mineral. 89, 1647 (2004).Google Scholar

  • 19.

    , E. E. Berry. J. Nucl. Chem. 29, 317 (1967).CrossrefGoogle Scholar

  • 20.

    , J. L. Meyer, B. O. Fowler. Inorg. Chem. 21, 3029 (1982).CrossrefGoogle Scholar

  • 21.

    , M. Jarlbring, D. E. Sandstrom, O. N. Antzutkin, W. Forsling. Langmuir 22, 4787 (2006).CrossrefGoogle Scholar

  • 22.

    , D. E. Sandstrom, M. Jarlbring, O. N. Antzutkin, W. Forsling. Langmuir 22, 11060 (2006).CrossrefGoogle Scholar

  • 23.

    S. K. Doss. J. Dent. Res. 5, 1067 (1976).Google Scholar

  • 24.

    , L. C. Bell, A. M. Posner, J. P. Quirk. J. Colloid Interface Sci. 42, 250 (1973).CrossrefGoogle Scholar

  • 25.

    , M. Jarlbring, L. Gunneriusson, W. Forsling. J. Colloid Interface Sci. 285, 206 (2005).CrossrefGoogle Scholar

  • 26.

    , J. Perrone, B. Fourest, E. Giffaut. J. Colloid Interface Sci. 249, 441 (2002).CrossrefGoogle Scholar

  • 27.

    , P. W. Schindler, H. Gamsjager. Kolloid Z. Z. Polym. 250, 759 (1972).CrossrefGoogle Scholar

  • 28.

    , M. K. Ridley, M. L. Machesky, D. J. Wesolowlski, D. A. Palmer. Geochim. Cosmochim. Acta 68, 239 (1997).CrossrefGoogle Scholar

  • 29.

    , R. P. J. J. Rietra, T. Hiemstra, W. H. Van Riemsdijk. Environ. Sci. Technol. 35, 3369 (2001).CrossrefGoogle Scholar

  • 30.

    , J. S. Geelhoed, T. Hiemstra, W. H. van Riemsdijk. Geochim. Cosmochim. Acta 61, 2389 (2004).CrossrefGoogle Scholar

  • 31.

    , E. Laiti, P. Persson, L. O. Ohman. Langmuir 12, 2969 (1996).CrossrefGoogle Scholar

  • 32.

    , R. Strauss, G. W. Brummer, N. J. Barrow. Eur. J. Soil Sci. 48, 101 (1997).CrossrefGoogle Scholar

  • 33.

    R. M. Smith, A. E. Martell. Critical Stability Constants, VI: Second Supplement, Plenum (1989).Google Scholar

  • 34.

    C. W. Davis. Ion Association, Butterworth (1962).Google Scholar

  • 35.

    M. Karlsson, J. Lindgren. <http://www.dagger.mine.nu/MAJO/winsgw.htm> (2006).Google Scholar

  • 36.

    , G. Eriksson. Anal. Chim. Acta 112, 375 (1979).CrossrefGoogle Scholar

About the article

Published Online: 2009-08-19

Published in Print: 2009-08-19


Citation Information: Pure and Applied Chemistry, Volume 81, Issue 9, Pages 1569–1584, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-08-10-02.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ravi Sankannavar and Sanjeev Chaudhari
Journal of Environmental Management, 2019, Volume 245, Page 230
[2]
Camilla L. Owens, Geoffrey R. Nash, Kathryn Hadler, Robert S. Fitzpatrick, Corby G. Anderson, and Frances Wall
Advances in Colloid and Interface Science, 2019, Volume 265, Page 14
[3]
Kaia Tõnsuaadu, Michel Gruselle, Frieda Kriisa, Andres Trikkel, Patrick Gredin, and Didier Villemin
JBIC Journal of Biological Inorganic Chemistry, 2018
[4]
Maria Harja and Gabriela Ciobanu
Science of The Total Environment, 2018, Volume 628-629, Page 36
[5]
Sergey V Dorozhkin
World Journal of Methodology, 2012, Volume 2, Number 1, Page 1
[6]
Maria Harja, Gabriela Ciobanu, B. Kaźmierczak, M. Kutyłowska, K. Piekarska, H. Jouhara, and J. Danielewicz
E3S Web of Conferences, 2017, Volume 22, Page 00062
[7]
Joanna Kolmas, Dariusz Marek, and Waclaw Kolodziejski
Applied Spectroscopy, 2015, Volume 69, Number 8, Page 902
[8]
Quan Liu, Zhuofan Chen, Haobo Pan, Brian W. Darvell, and Jukka Pekka Matinlinna
European Journal of Inorganic Chemistry, 2016, Volume 2016, Number 36, Page 5623
[9]
Gabriela Ciobanu, Simona Barna, and Maria Harja
Archives of Environmental Protection, 2016, Volume 42, Number 2
[10]
Ashaki A. Rouff, Ning Ma, and Adam B. Kustka
Chemosphere, 2016, Volume 146, Page 574
[11]
Gabriela Ciobanu and Octavian Ciobanu
Desalination and Water Treatment, 2016, Volume 57, Number 48-49, Page 23257
[12]
Michel Gruselle
Journal of Organometallic Chemistry, 2015, Volume 793, Page 93
[13]
Gabriela Ciobanu and Octavian Ciobanu
Journal of Applied Polymer Science, 2015, Volume 132, Number 17, Page n/a
[14]
Anthony Ash, Francis Mulholland, Gary R. Burnett, and Peter J. Wilde
Biofouling, 2014, Volume 30, Number 10, Page 1183
[15]
Karima Achelhi, Abdelaziz Laghzizil, and Ahmed Saoiabi
Desalination and Water Treatment, 2015, Volume 54, Number 7, Page 1949
[16]
Anthony Ash, Gary R. Burnett, Roger Parker, Mike J. Ridout, Neil M. Rigby, and Peter J. Wilde
Colloids and Surfaces B: Biointerfaces, 2014, Volume 116, Page 603
[17]
Sanaa Saoiabi, Karima Achelhi, Sylvie Masse, Ahmed Saoiabi, Abdelaziz Laghzizil, and Thibaud Coradin
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, Volume 419, Page 180
[18]
Hassen Agougui, Abdallah Aissa, and Mongi Debbabi
Applied Surface Science, 2012, Volume 261, Page 182

Comments (0)

Please log in or register to comment.
Log in