Jump to ContentJump to Main Navigation
Show Summary Details
Weitere Optionen …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Hrsg. v. Burrows, Hugh / Stohner, Jürgen

IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Alle Formate und Preise
Weitere Optionen …
Band 81, Heft 9


Surface complexation and proton-promoted dissolution in aqueous apatite systems

Åsa Bengtsson / Staffan Sjöberg
Online erschienen: 19.08.2009 | DOI: https://doi.org/10.1351/PAC-CON-08-10-02

The dissolution of hydroxyapatite (HAP) and fluorapatite (FAP) has been studied (25 °C, 0.1 M NaCl medium) within the pH ranges 2–11 (FAP) and 4–10 (HAP). A range of techniques has been utilized to achieve understanding in how these two abundant minerals may interact with their natural surroundings (e.g., body fluids and soil environments). Synthetic crystalline HAP and FAP were prepared, and both minerals were found to undergo a phase transformation generated during a dialysis step of the synthetic routes. Surface-deficient layers with the nonstoichiometric compositions Ca8.4(HPO4)1.6(PO4)4.4(OH)0.4 and Ca9(HPO4)2(PO4)4F2 were identified. The equilibrium analysis of experimental solubility data of the two apatite systems was based upon potentiometric titration data, batch experiments, and zeta-potential measurements in combination with information provided by X-ray photoelectron spectroscopy (XPS) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. The analysis required, besides the two solubility equilibria, the formation of surface protonation/deprotonation reactions, re-adsorption processes involving phosphate and fluoride ions as well as an ion exchange reaction (≡F + H2O ⇋ ≡OH + H+ + F) to fully describe the dissolution characteristics of the two apatite systems. The resulting model also agrees with observations from XPS and solubility data, claiming the formation of CaF2(s) in the most acidic pH range of the FAP system. In addition, calculated isoelectric points (pHiep) are in agreement with values from surface charge measurements showing pHiep (HAP) = 8.1 and pHiep (FAP) = 5.7.

Keywords: fluorapatite; hydroxyapatite; phase transformation; spectroscopy; surface complexation modeling


International Symposium on Solubility Phenomena and Related Equilibrium Processes (ISSP-13), International Symposium on Solubility Phenomena, ISSP, Solubility Phenomena, 13th, Dublin, Ireland, 2008-07-27–2008-07-31


  • 1.

    G. M. Filippelli. Phosphates: Geochemical, Geobiological, and Materials Importance, Vol. 48, M. J. Kohn, J. Rakovan, J. M. Hughes (Eds.), Mineralogical Society of America (2002).Google Scholar

  • 2.

    , R. McDowell, S. Sinjaj, A. Sharpley, E. Frossard. Soil Sci. 166, 365 (2001).CrossrefGoogle Scholar

  • 3.

    , P. H. Moisander, T. F. Steppe, N. S. Hall, J. Kuparinen, H. W. Paerl. Mar. Ecol. Progr. Rep. Ser. 262, 81 (2003).CrossrefGoogle Scholar

  • 4.

    , E. O. Oelkers, E. Valsami-Jones. Elements 2, 83 (2008).CrossrefGoogle Scholar

  • 5.

    , D. L. Jones. Plant Soil 205, 25 (1998).CrossrefGoogle Scholar

  • 6.

    K. A. Gross, C. C. Berndt. In Phosphates: Geochemical, Geobiological, and Materials Importance, Vol. 48, M. J. Kohn, J. Rakovan, J. M. Hughes (Eds.), pp. 631672, Mineralogical Society of America (2002).Google Scholar

  • 7.

    J. C. Elliot. In Phosphates: Geochemical, Geobiological, and Materials Importance, Vol. 48, M. J. Kohn, J. Rakovan, J. M. Hughes (Eds.), pp. 427453, Mineralogical Society of America (2002).Google Scholar

  • 8.

    M. J. Dallemagne, L. J. Richelle. In Biological Mineralization, Vols. 2342, I. Zipkin (Ed.), John Wiley, New York (1973).Google Scholar

  • 9.

    , D. N. Misra. J. Biomed. Mater. Res. 48, 848 (1999).CrossrefGoogle Scholar

  • 10.

    W. E. Brown, T. M. Gregory L. C. Chow. Caries Res. 11, 118 (1977).CrossrefGoogle Scholar

  • 11.

    S. K. Doss. J. Dent. Res. 5, 1067 (1976).Google Scholar

  • 12.

    , A. Bengtsson, A. Shchukarev, P. Persson, S. Sjoberg. Geochim. Cosmochim. Acta 73, 257 (2009).CrossrefGoogle Scholar

  • 13.

    , A. Bengtsson, A Shchukarev, P. Persson, S. Sjoberg. Langmuir 25, 2355 (2009).CrossrefGoogle Scholar

  • 14.

    , E. Hayek, W. Stadlmann. Angew. Chem. 67, 327 (1955).CrossrefGoogle Scholar

  • 15.

    , G. Penel, G. Leroy, C. Rey, B. Sombret, J. P. Huvenne, E. Bres. J. Mater. Sci.: Mater. Med. 8, 271 (1997).CrossrefGoogle Scholar

  • 16.

    , M. Kukura, L. C. Bell, A. M. Posner, J. P. Quirk. J. Phys. Chem. 76, 900 (1972).CrossrefGoogle Scholar

  • 17.

    , P. W. Brown, R. I. Martin. J. Phys. Chem. 103, 1671 (1999).CrossrefGoogle Scholar

  • 18.

    C. Park, P. Fenter, Z. Zhang, L. Cheng, N. C. Sturchio. Am. Mineral. 89, 1647 (2004).Google Scholar

  • 19.

    , E. E. Berry. J. Nucl. Chem. 29, 317 (1967).CrossrefGoogle Scholar

  • 20.

    , J. L. Meyer, B. O. Fowler. Inorg. Chem. 21, 3029 (1982).CrossrefGoogle Scholar

  • 21.

    , M. Jarlbring, D. E. Sandstrom, O. N. Antzutkin, W. Forsling. Langmuir 22, 4787 (2006).CrossrefGoogle Scholar

  • 22.

    , D. E. Sandstrom, M. Jarlbring, O. N. Antzutkin, W. Forsling. Langmuir 22, 11060 (2006).CrossrefGoogle Scholar

  • 23.

    S. K. Doss. J. Dent. Res. 5, 1067 (1976).Google Scholar

  • 24.

    , L. C. Bell, A. M. Posner, J. P. Quirk. J. Colloid Interface Sci. 42, 250 (1973).CrossrefGoogle Scholar

  • 25.

    , M. Jarlbring, L. Gunneriusson, W. Forsling. J. Colloid Interface Sci. 285, 206 (2005).CrossrefGoogle Scholar

  • 26.

    , J. Perrone, B. Fourest, E. Giffaut. J. Colloid Interface Sci. 249, 441 (2002).CrossrefGoogle Scholar

  • 27.

    , P. W. Schindler, H. Gamsjager. Kolloid Z. Z. Polym. 250, 759 (1972).CrossrefGoogle Scholar

  • 28.

    , M. K. Ridley, M. L. Machesky, D. J. Wesolowlski, D. A. Palmer. Geochim. Cosmochim. Acta 68, 239 (1997).CrossrefGoogle Scholar

  • 29.

    , R. P. J. J. Rietra, T. Hiemstra, W. H. Van Riemsdijk. Environ. Sci. Technol. 35, 3369 (2001).CrossrefGoogle Scholar

  • 30.

    , J. S. Geelhoed, T. Hiemstra, W. H. van Riemsdijk. Geochim. Cosmochim. Acta 61, 2389 (2004).CrossrefGoogle Scholar

  • 31.

    , E. Laiti, P. Persson, L. O. Ohman. Langmuir 12, 2969 (1996).CrossrefGoogle Scholar

  • 32.

    , R. Strauss, G. W. Brummer, N. J. Barrow. Eur. J. Soil Sci. 48, 101 (1997).CrossrefGoogle Scholar

  • 33.

    R. M. Smith, A. E. Martell. Critical Stability Constants, VI: Second Supplement, Plenum (1989).Google Scholar

  • 34.

    C. W. Davis. Ion Association, Butterworth (1962).Google Scholar

  • 35.

    M. Karlsson, J. Lindgren. <http://www.dagger.mine.nu/MAJO/winsgw.htm> (2006).Google Scholar

  • 36.

    , G. Eriksson. Anal. Chim. Acta 112, 375 (1979).CrossrefGoogle Scholar


Online erschienen: 19.08.2009

Erschienen im Druck: 19.08.2009

Quellenangabe: Pure and Applied Chemistry, Band 81, Heft 9, Seiten 1569–1584, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-08-10-02.

Zitat exportieren

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Zitierende Artikel

Hier finden Sie eine Übersicht über alle Crossref-gelisteten Publikationen, in denen dieser Artikel zitiert wird. Um automatisch über neue Zitierungen dieses Artikels informiert zu werden, aktivieren Sie einfach oben auf dieser Seite den „E-Mail-Alert: Neu zitiert“.

Ravi Sankannavar and Sanjeev Chaudhari
Journal of Environmental Management, 2019, Jahrgang 245, Seite 230
Camilla L. Owens, Geoffrey R. Nash, Kathryn Hadler, Robert S. Fitzpatrick, Corby G. Anderson, and Frances Wall
Advances in Colloid and Interface Science, 2019, Jahrgang 265, Seite 14
Kaia Tõnsuaadu, Michel Gruselle, Frieda Kriisa, Andres Trikkel, Patrick Gredin, and Didier Villemin
JBIC Journal of Biological Inorganic Chemistry, 2018
Maria Harja and Gabriela Ciobanu
Science of The Total Environment, 2018, Jahrgang 628-629, Seite 36
Sergey V Dorozhkin
World Journal of Methodology, 2012, Jahrgang 2, Nummer 1, Seite 1
Maria Harja, Gabriela Ciobanu, B. Kaźmierczak, M. Kutyłowska, K. Piekarska, H. Jouhara, and J. Danielewicz
E3S Web of Conferences, 2017, Jahrgang 22, Seite 00062
Joanna Kolmas, Dariusz Marek, and Waclaw Kolodziejski
Applied Spectroscopy, 2015, Jahrgang 69, Nummer 8, Seite 902
Quan Liu, Zhuofan Chen, Haobo Pan, Brian W. Darvell, and Jukka Pekka Matinlinna
European Journal of Inorganic Chemistry, 2016, Jahrgang 2016, Nummer 36, Seite 5623
Gabriela Ciobanu, Simona Barna, and Maria Harja
Archives of Environmental Protection, 2016, Jahrgang 42, Nummer 2
Ashaki A. Rouff, Ning Ma, and Adam B. Kustka
Chemosphere, 2016, Jahrgang 146, Seite 574
Gabriela Ciobanu and Octavian Ciobanu
Desalination and Water Treatment, 2016, Jahrgang 57, Nummer 48-49, Seite 23257
Michel Gruselle
Journal of Organometallic Chemistry, 2015, Jahrgang 793, Seite 93
Gabriela Ciobanu and Octavian Ciobanu
Journal of Applied Polymer Science, 2015, Jahrgang 132, Nummer 17, Seite n/a
Anthony Ash, Francis Mulholland, Gary R. Burnett, and Peter J. Wilde
Biofouling, 2014, Jahrgang 30, Nummer 10, Seite 1183
Karima Achelhi, Abdelaziz Laghzizil, and Ahmed Saoiabi
Desalination and Water Treatment, 2015, Jahrgang 54, Nummer 7, Seite 1949
Anthony Ash, Gary R. Burnett, Roger Parker, Mike J. Ridout, Neil M. Rigby, and Peter J. Wilde
Colloids and Surfaces B: Biointerfaces, 2014, Jahrgang 116, Seite 603
Sanaa Saoiabi, Karima Achelhi, Sylvie Masse, Ahmed Saoiabi, Abdelaziz Laghzizil, and Thibaud Coradin
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, Jahrgang 419, Seite 180
Hassen Agougui, Abdallah Aissa, and Mongi Debbabi
Applied Surface Science, 2012, Jahrgang 261, Seite 182

Kommentare (0)