The solubilities of brandholzite, [Mg(H2O)6][Sb(OH)6]2, and bottinoite, [Ni(H2O)6][Sb(OH)6]2, at 25 °C in water have been measured. Solubilities are 1.95(4) × 10-3 and 3.42(11) × 10-4 mol dm-3, respectively. The incongruent dissolution of romeite, Ca2Sb2O7, and bindheimite, Pb2Sb2O7, at 25 °C in 0.100 mol dm-3 aqueous HNO3 was also investigated. Equilibrium dissolved Sb concentrations were 3.3 ± 1.0 × 10-7 and 7.7 ± 2.1 × 10-8 mol dm-3, respectively. These values have been used to re-evaluate the geochemical mobility of Sb in the supergene environment. It is concluded that the element is geochemically immobile in solution and in soils. This was in part validated by an orientation soil geochemical survey over the Bayley Park prospect near Armidale, New South Wales, Australia. Anomalous soil Sb levels are confined to within 100 m of known stibnite mineralization.

Pure and Applied Chemistry
The Scientific Journal of IUPAC
Ed. by Burrows, Hugh / Stohner, Jürgen
IMPACT FACTOR 2017: 5.294
CiteScore 2017: 3.42
SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546
- Online
- ISSN
- 1365-3075
Dispersion of antimony from oxidizing ore deposits
Free Access
Keywords: antimony; bindheimite; bottinoite; brandholzite; exploration geochemistry; mobility; mopungite; romeite; soils; solubility
Conference
International Symposium on Solubility Phenomena and Related Equilibrium Processes (ISSP-13), International Symposium on Solubility Phenomena, ISSP, Solubility Phenomena, 13th, Dublin, Ireland, 2008-07-27–2008-07-31
References
- 1.
P. A. Williams. Oxide Zone Geochemistry, Ellis Horwood, Chichester (1990).Google Scholar
- 2.
M. Filella, N. Belzile, Y.-W. Chen. Earth Sci. Rev. 57, 125 (2002).CrossrefGoogle Scholar
- 3.
M. Filella, N. Belzile, Y.-W. Chen. Earth Sci. Rev. 59, 265 (2002).Google Scholar
- 4.
M. Filella, N. Belzile, M.-C. Lett. Earth Sci. Rev. 80, 195 (2007).CrossrefGoogle Scholar
- 5.
M. Filella, M. P. M. May. Geochim. Cosmochim. Acta 67, 4013 (2003).Google Scholar
- 6.
J. W. Anthony, R. A. Bideaux, K. W. Bladh, M. C. Nichols. Handbook of Mineralogy, Vols. IV, Mineral Data Publishing, Tucson (19902003).Google Scholar
- 7.
J. I. Langford. J. Appl. Crystallogr. 6, 190 (1973).CrossrefGoogle Scholar
- 8.
P. Bonazzi, S. Menchetti, A. Caneschi, S. Magnanelli. Am. Mineral. 77, 1301 (1992).Google Scholar
- 9.
A. Friedrich, M. Wildner, E. Tillmanns, P. L. Merz. Am. Mineral. 85, 593 (2000).Google Scholar
- 10.
A. L. Pitman, M. Pourbaix, N. de Zoubov. J. Electrochem. Soc. 104, 594 (1957).CrossrefGoogle Scholar
- 11.
D. G. Brookins. Chem. Geol. 54, 271 (1986).CrossrefGoogle Scholar
- 12.
B. W. Vink. Chem. Geol. 130, 21 (1996).Google Scholar
- 13.
R. Pankajavalli, O. M. Sreedharan. J. Mater. Sci. 22, 177 (1987).CrossrefGoogle Scholar
- 14.
A. V. Zotov, N. D. Shikina, N. N. Akinfiev. Geochim. Cosmochim. Acta 67, 1821 (2003).Google Scholar
- 15.
C. F. Baes, R. E. Mesmer. Hydrolysis of Cations, John Wiley, New York (1976).Google Scholar
- 16.
A. R. Tourky, A. A. Mousa. J. Chem. Soc. 759 (1948).CrossrefGoogle Scholar
- 17.
D. V. S. Jain, A. K. Banerjee. J. Inorg. Nucl. Chem. 19, 177 (1961).CrossrefGoogle Scholar
- 18.
J. M. Casas, G. Crisostomo, L. Cifuentes. Can. J. Chem. Eng. 82, 175 (2004).Google Scholar
- 19.
D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. I. Churney, R. I. Nuttall. J. Phys. Chem. Ref. Data 11, Suppl. no. 2 (1982).Google Scholar
- 20.
K. M. Krupka, R. J. Serne. U.S. Dept. Energy Pacific Northwest Lab. Rep. PNNL-14126 (2002).Google Scholar
- 21.
N. J. Wilson, D. Craw, K. Hunter. Environ. Pollut. 129, 257 (2004).Google Scholar
- 22.
M. Accornero, L. Marini, M. Lelli. J. Solution Chem. 37, 785 (2008).Google Scholar
- 23.
W. A. England, M. G. Cross, A. Hamnett, P. J. Wiseman, J. B. Goodenough. Solid State Ionics 1, 231 (1980).Google Scholar
- 24.
L. H. Baetsle, D. Huys. J. Inorg. Nucl. Chem. 30, 639 (1968).CrossrefGoogle Scholar
- 25.
M. Riviere, J. L. Fourquet, J. Grins, M. Nygren. Mater. Res. Bull. 23, 965 (1988).CrossrefGoogle Scholar
- 26.
R. C. T. Slade, G. P. Hall, A. Ramanan, E. Prince. Solid State Ionics 92, 171 (1996).CrossrefGoogle Scholar
- 27.
S. A. Williams. Miner. Rec. 16, 73 (1985).Google Scholar
- 28.
C. A. J. Appelo, D. Postma. Geochemistry, Groundwater and Pollution, Balkema, Rotterdam (1993).Google Scholar
- 29.
V. P. Zakaznova-Herzog, T. M. Seward. Geochim. Cosmochim. Acta 70, 2298 (2006).Google Scholar
- 30.
V. Past. "Antimony", In Standard Potentials in Aqueous Solution, A. J. Bard, R. Parsons, J. Jordan (Eds.), pp. 172179, Marcel Dekker, New York (1985).Google Scholar
- 31.
G. Grube, F. Schweigardt. Z. Elektrochem. Angew. Phys. Chem. 29, 257 (1923).Google Scholar
- 32.
R. A. Robie, B. S. Hemingway. U.S. Geol. Surv. Bull. 2131 (1995).Google Scholar
- 33.
M. J. Blandamer, J. Burgess, R. D. Peacock. J. Chem. Soc., Dalton Trans. 1084 (1974).CrossrefGoogle Scholar
- 34.
R. M. Smith, A. E. Martell. Critical Stability Constants, Vol. 4, Inorganic Complexes, Plenum, New York (1976).Google Scholar
- 35.
C. A. Johnson, H. Moench, P. Wersin, P. Kugler, C. Wenger. J. Environ. Qual. 34, 248 (2005).Google Scholar
- 36.
L. B. Gilligan, J. W. Brownlow, R. G. Cameron, H. F. Henley. Dorrigo-Coffs Harbour 1:250,000 Metallogenic Map SH/56-10, SH/56-11: Metallogenic Study and Mineral Deposit Data Sheets, New South Wales Geological Survey, Sydney (1992).Google Scholar
- 37.
W. J. Staude. Geol. Surv. NSW Rep. GS1970/188 (1970).Google Scholar
About the article
Published Online: 2009-08-04
Published in Print: 2009-08-04
Citation Information: Pure and Applied Chemistry, Volume 81, Issue 9, Pages 1547–1553, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-08-10-21.
© 2013 Walter de Gruyter GmbH, Berlin/Boston.
Citing Articles
Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.
Comments (0)