Jump to ContentJump to Main Navigation
Show Summary Details

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen


IMPACT FACTOR increased in 2015: 2.615
5-year IMPACT FACTOR: 3.127
Rank 60 out of 163 in category Chemistry, Multidisciplinary in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2014: 1.012
Source Normalized Impact per Paper (SNIP) 2014: 1.187
Impact per Publication (IPP) 2014: 2.785

249,00 € / $374.00 / £187.00*

Online
ISSN
1365-3075
See all formats and pricing

 


Select Volume and Issue
Loading journal volume and issue information...

20,00 € / $25.00 / £15.00

Get Access to Full Text

Hydrated metal ions in aqueous solution: How regular are their structures?

Ingmar Persson1

1Department of Chemistry, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden

Conference

International Conference on Solution Chemistry (ICSC-31), International Conference on Solution Chemistry, ICSC, Solution Chemistry, 31st, Innsbruck, Austria, 2009-08-21–2009-08-25

Citation Information: Pure and Applied Chemistry. Volume 82, Issue 10, Pages 1901–1917, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: 10.1351/PAC-CON-09-10-22, August 2010

Publication History

Published Online:
2010-08-06

The hydration reaction is defined as the transfer of an ion or neutral chemical species from the gaseous phase into water, Mn+(g) → Mn+(aq). In this process, water molecules bind to metal ions through ion-dipole bonds of mainly electrostatic character. The hydration reaction is always strongly exothermic with increasing heat of hydration with increasing charge density of the ion. The structures of the hydrated metal ions in aqueous solution display a variety of configurations depending on the size and electronic properties of the metal ion. The basic configurations of hydrated metal ions in aqueous solution are tetrahedral, octahedral, square antiprismatic, and tricapped trigonal prismatic. This paper gives an overview of the structures of hydrated metal ions in aqueous solution with special emphasis on those with a non-regular coordination figure. Metal ions without d-electrons in the valance shell form regular aqua complexes with a coordination figure, allowing a maximum number of water molecules to be clustered around the metal ion. This number is dependent on the ratio of the metal ion radius to the atomic radius of oxygen in a coordinated water molecule (1.34 Å). The lighter lanthanoid(III) ions have a regular tricapped trigonal prismatic configuration with the M–O distance to the capping water molecules somewhat longer than to the prismatic ones. However, with increasing atomic number of the lanthanoid(III) ions, an increasing distortion of the capping water molecules is observed, resulting in a partial loss of water molecules in the capping positions for the heaviest lanthanoids. Metal ions with d4 and d9 valance shell electron configuration, as chromium(II) and copper(II), respectively, have Jahn–Teller distorted aqua complexes. Metal ions with low charge and ability to form strong covalent bonds, as silver(I), mercury(II), palladium(II), and platinum(II), often display distorted coordination figures due to the second-order Jahn–Teller effect. Metal ions with d10s2 valence shell electron configuration may have a stereochemically active lone electron pair (hemi-directed complexes) or an inactive one (holo-directed). The hydrated tin(II), lead(II), and thallium(I) ions are hemi-directed in aqueous solution, while the hydrated bismuth(III) ion is holo-directed. The structures of the hydrated cationic oxo-metal ions are reported as well.

Keywords: coordination chemistry; coordination geometry; hydration; metal ions; water

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Nicolò Campagnol, Tom R. C. Van Assche, Minyuan Li, Linda Stappers, Mircea Dincă, Joeri F. M. Denayer, Koen Binnemans, Dirk E. De Vos, and Jan Fransaer
J. Mater. Chem. A, 2016, Volume 4, Number 10, Page 3914
[2]
Gregory N. Smith, Paul Brown, Craig James, Roger Kemp, Asad Muhammad Khan, Tomás S. Plivelic, Sarah E. Rogers, and Julian Eastoe
Journal of Colloid and Interface Science, 2015
[3]
Wei Hua, Dominique Verreault, and Heather C. Allen
ChemPhysChem, 2015, Page n/a
[4]
Jian Zhang, Yuguo Xia, Li Zhang, Dairong Chen, and Xiuling Jiao
Phys. Chem. Chem. Phys., 2015, Volume 17, Number 41, Page 27391
[5]
Fabian Böhm, Vinay Sharma, Gerhard Schwaab, and Martina Havenith
Phys. Chem. Chem. Phys., 2015, Volume 17, Number 29, Page 19582
[6]
Narayanaswamy Venkatesan Prabhu and Dharmalingam Sangeetha
Journal of Membrane Science, 2015
[7]
Xiaoqing Wang, Liangliang Zhang, Jie Yang, Fuling Liu, Fangna Dai, Rongming Wang, and Daofeng Sun
J. Mater. Chem. A, 2015, Volume 3, Number 24, Page 12777
[8]
Masato Yoshioka, Toshiyuki Yokoi, and Takashi Tatsumi
ACS Catalysis, 2015, Page 4268
[9]
Maryam Mohammadi, Kerstin Forsberg, Lars Kloo, Joaquin Martinez De La Cruz, and Åke Rasmuson
Hydrometallurgy, 2015
[10]
Qianqian Cai, Brett D. Turner, Daichao Sheng, and Scott Sloan
Journal of Contaminant Hydrology, 2015, Volume 177-178, Page 136
[11]
S. A. Ovalle-Serrano, V. S. Carrillo, C. Blanco-Tirado, J. P. Hinestroza, and M. Y. Combariza
Cellulose, 2015, Volume 22, Number 3, Page 1841
[12]
Indraneel S. Zope, Aravind Dasari, and Giovanni Camino
Materials Chemistry and Physics, 2015, Volume 157, Page 69
[14]
Moni U. Khobragade and Anjali Pal
Journal of Environmental Science and Health, Part A, 2015, Volume 50, Number 4, Page 385
[15]
Patrick Frank, Maurizio Benfatto, Munzarin Qayyam, Britt Hedman, and Keith O. Hodgson
The Journal of Chemical Physics, 2015, Volume 142, Number 8, Page 084310
[17]
Zheng Li, Kai Xiang, Wenting Xing, W. Craig Carter, and Yet-Ming Chiang
Advanced Energy Materials, 2015, Volume 5, Number 5, Page n/a
[18]
Hironori Takeda, Motoyuki Hattori, Tomohiro Nishizawa, Keitaro Yamashita, Syed T. A. Shah, Martin Caffrey, Andrés D. Maturana, Ryuichiro Ishitani, and Osamu Nureki
Nature Communications, 2014, Volume 5, Page 5374
[19]
Vinay Sharma, Fabian Böhm, Gerhard Schwaab, and Martina Havenith
Phys. Chem. Chem. Phys., 2014, Volume 16, Number 45, Page 25101
[20]
Gegham Galstyan and Ernst-Walter Knapp
Journal of Computational Chemistry, 2015, Volume 36, Number 2, Page 69
[21]
Kevin R. Hinkle, Cynthia J. Jameson, and Sohail Murad
The Journal of Physical Chemistry C, 2014, Volume 118, Number 41, Page 23803
[22]
Babar Shahzad Khan, Tahir Mehmood, Aiman Mukhtar, and Ming Tan
Materials Letters, 2014, Volume 137, Page 13
[23]
Stewart J. Taylor, Mark D. Haw, Jan Sefcik, and Ashleigh J. Fletcher
Langmuir, 2014, Volume 30, Number 34, Page 10231
[24]
Asma Hammami, Amal Rabti, and Noureddine Raouafi
Journal of Electroanalytical Chemistry, 2014, Volume 731, Page 179
[26]
A. Ryzhikov, I. Khay, H. Nouali, T. J. Daou, and J. Patarin
Physical Chemistry Chemical Physics, 2014, Volume 16, Number 33, Page 17893
[27]
Manuela Borchert, Max Wilke, Christian Schmidt, Kristina Kvashnina, and Sandro Jahn
Geochimica et Cosmochimica Acta, 2014, Volume 142, Page 535
[28]
Mahdy M. Elmahdy, Astrid Drechsler, Eva Bittrich, Petra Uhlmann, and Manfred Stamm
Colloid and Polymer Science, 2014, Volume 292, Number 8, Page 1999
[30]
Nicolò Campagnol, Ricardo Romero-Vara, Willem Deleu, Linda Stappers, Koen Binnemans, Dirk E. De Vos, and Jan Fransaer
ChemElectroChem, 2014, Volume 1, Number 7, Page 1182
[31]
Mikołaj Owsianiak, Karin Veltman, Michael Z. Hauschild, A. Jan Hendriks, Zoran J.N. Steinmann, and Mark A.J. Huijbregts
Chemosphere, 2014, Volume 112, Page 487
[32]
Mercedes García Bugarín and Ricardo A. Mosquera
Structural Chemistry, 2014, Volume 25, Number 6, Page 1647
[33]
Diana Yepes, Robert Seidel, Bernd Winter, Jochen Blumberger, and Pablo Jaque
The Journal of Physical Chemistry B, 2014, Volume 118, Number 24, Page 6850
[34]
Shubin Yang, Cho Han, Xiangke Wang, and Masaaki Nagatsu
Journal of Hazardous Materials, 2014, Volume 274, Page 46
[35]
Ida Svanedal, Susanne Boija, Ann Almesåker, Gerd Persson, Fredrik Andersson, Erik Hedenström, Dan Bylund, Magnus Norgren, and Håkan Edlund
Langmuir, 2014, Volume 30, Number 16, Page 4605
[36]
Fernanda Duarte, Paul Bauer, Alexandre Barrozo, Beat Anton Amrein, Miha Purg, Johan Åqvist, and Shina Caroline Lynn Kamerlin
The Journal of Physical Chemistry B, 2014, Volume 118, Number 16, Page 4351
[37]
Seok Min Yoon, Scott C. Warren, and Bartosz A. Grzybowski
Angewandte Chemie International Edition, 2014, Volume 53, Number 17, Page 4437
[38]
Seok Min Yoon, Scott C. Warren, and Bartosz A. Grzybowski
Angewandte Chemie, 2014, Volume 126, Number 17, Page 4526
[39]
Kenneth A. Rubinson
Journal of Solution Chemistry, 2014, Volume 43, Number 3, Page 453
[40]
Sang Jun Kim, Yeob Lee, Dong Ki Lee, Jung Woo Lee, and Jeung Ku Kang
Journal of Materials Chemistry A, 2014, Volume 2, Number 12, Page 4136
[41]
[42]
O. V. Vashchenko, Yu. L. Ermak, and L. N. Lisetski
Biophysics, 2013, Volume 58, Number 4, Page 515
[44]
Holden W. H. Lai, Albert Tianxiang Liu, Bright U. Emenike, William R. Carroll, and John D. Roberts
The Journal of Physical Chemistry A, 2014, Volume 118, Number 11, Page 1965
[45]
Md Munan Shaik, Nicholus Bhattacharjee, Anirban Bhattacharjee, Martin J. Field, and Giuseppe Zanotti
Proteins: Structure, Function, and Bioinformatics, 2014, Volume 82, Number 7, Page 1311
[46]
Muhammad M.R. Bhuiyan, Shawn D. Lin, and Ting C. Hsiao
Catalysis Today, 2014, Volume 226, Page 150
[47]
Sibel Kacmaz, Kadriye Ertekin, Ozlem Oter, Deniz Mercan, Engin Cetinkaya, and Erdal Celik
Journal of Luminescence, 2014, Volume 147, Page 265
[48]
Seyed A. Dastgheib, Jianli Ren, Massoud Rostam-Abadi, and Ramsay Chang
Applied Surface Science, 2014, Volume 290, Page 92
[49]
Juliana Martins de Souza e Silva, Murilo Pastorello, Jörg Kobarg, Mateus Borba Cardoso, and Italo Odone Mazali
ChemPhysChem, 2013, Volume 14, Number 18, Page 4075
[51]
Jian Payandeh, Roland Pfoh, and Emil F. Pai
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2013, Volume 1828, Number 11, Page 2778
[52]
Santiago Botasini, Gonzalo Heijo, and Eduardo Méndez
Analytica Chimica Acta, 2013, Volume 800, Page 1
[53]
Narottam Sutradhar, Sandip Kumar Pahari, Muthirulandi Jayachandran, A. Manuel Stephan, J. R. Nair, Balasubramanian Subramanian, Hari C. Bajaj, Haresh M. Mody, and Asit Baran Panda
Journal of Materials Chemistry A, 2013, Volume 1, Number 32, Page 9122
[54]
Lutfullah, Mohd Rashid, Uzma Haseen, and Nafisur Rahman
Journal of Industrial and Engineering Chemistry, 2014, Volume 20, Number 3, Page 809
[55]
Vinay Sharma, Fabian Böhm, Michael Seitz, Gerhard Schwaab, and Martina Havenith
Physical Chemistry Chemical Physics, 2013, Volume 15, Number 21, Page 8383
[56]
Li-Na Jia, Lei Hou, Lei Wei, Xiao-Jing Jing, Bo Liu, Yao-Yu Wang, and Qi-Zhen Shi
Crystal Growth & Design, 2013, Volume 13, Number 4, Page 1570
[57]
Amanda Beck, Veena Vijayanathan, Thresia Thomas, and T.J. Thomas
Biochimie, 2013, Volume 95, Number 6, Page 1310
[58]
V. Hernández-Montoya, M.A. Pérez-Cruz, D.I. Mendoza-Castillo, M.R. Moreno-Virgen, and A. Bonilla-Petriciolet
Journal of Environmental Management, 2013, Volume 116, Page 213
[59]
Simone Furini and Carmen Domene
Biophysical Journal, 2012, Volume 103, Number 10, Page 2106
[60]
A. Guskov, N. Nordin, A. Reynaud, H. Engman, A.-K. Lundback, A. J. O. Jong, T. Cornvik, T. Phua, and S. Eshaghi
Proceedings of the National Academy of Sciences, 2012, Volume 109, Number 45, Page 18459
[61]
[62]
Susana Gómez-Salces, Fernando Aguado, Rafael Valiente, and Fernando Rodríguez
Angewandte Chemie International Edition, 2012, Volume 51, Number 37, Page 9335
[63]
David A. Johnson and Peter G. Nelson
Inorganic Chemistry, 2012, Volume 51, Number 11, Page 6116
[64]
Peter De Vreese, Neil R. Brooks, Kristof Van Hecke, Luc Van Meervelt, Edward Matthijs, Koen Binnemans, and Rik Van Deun
Inorganic Chemistry, 2012, Volume 51, Number 9, Page 4972
[65]
Keyan Li, Min Li, and Dongfeng Xue
The Journal of Physical Chemistry A, 2012, Volume 116, Number 16, Page 4192
[66]
Daniel T. Bowron, Elizabeth C. Beret, Eloisa Martin-Zamora, Alan K. Soper, and Enrique Sánchez Marcos
Journal of the American Chemical Society, 2012, Volume 134, Number 2, Page 962
[67]
Johan Mähler and Ingmar Persson
Inorganic Chemistry, 2012, Volume 51, Number 1, Page 425
[68]
Matteo Farnesi Camellone and Dominik Marx
Phys. Chem. Chem. Phys., 2012, Volume 14, Number 2, Page 937
[69]
Simone Furini and Carmen Domene
Journal of Molecular Biology, 2011, Volume 409, Number 5, Page 867

Comments (0)

Please log in or register to comment.