Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

See all formats and pricing
More options …
Volume 82, Issue 10


Hydrated metal ions in aqueous solution: How regular are their structures?

Ingmar Persson
  • Corresponding author
  • Department of Chemistry, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-08-06 | DOI: https://doi.org/10.1351/PAC-CON-09-10-22

The hydration reaction is defined as the transfer of an ion or neutral chemical species from the gaseous phase into water, Mn+(g) → Mn+(aq). In this process, water molecules bind to metal ions through ion-dipole bonds of mainly electrostatic character. The hydration reaction is always strongly exothermic with increasing heat of hydration with increasing charge density of the ion. The structures of the hydrated metal ions in aqueous solution display a variety of configurations depending on the size and electronic properties of the metal ion. The basic configurations of hydrated metal ions in aqueous solution are tetrahedral, octahedral, square antiprismatic, and tricapped trigonal prismatic. This paper gives an overview of the structures of hydrated metal ions in aqueous solution with special emphasis on those with a non-regular coordination figure. Metal ions without d-electrons in the valance shell form regular aqua complexes with a coordination figure, allowing a maximum number of water molecules to be clustered around the metal ion. This number is dependent on the ratio of the metal ion radius to the atomic radius of oxygen in a coordinated water molecule (1.34 Å). The lighter lanthanoid(III) ions have a regular tricapped trigonal prismatic configuration with the M–O distance to the capping water molecules somewhat longer than to the prismatic ones. However, with increasing atomic number of the lanthanoid(III) ions, an increasing distortion of the capping water molecules is observed, resulting in a partial loss of water molecules in the capping positions for the heaviest lanthanoids. Metal ions with d4 and d9 valance shell electron configuration, as chromium(II) and copper(II), respectively, have Jahn–Teller distorted aqua complexes. Metal ions with low charge and ability to form strong covalent bonds, as silver(I), mercury(II), palladium(II), and platinum(II), often display distorted coordination figures due to the second-order Jahn–Teller effect. Metal ions with d10s2 valence shell electron configuration may have a stereochemically active lone electron pair (hemi-directed complexes) or an inactive one (holo-directed). The hydrated tin(II), lead(II), and thallium(I) ions are hemi-directed in aqueous solution, while the hydrated bismuth(III) ion is holo-directed. The structures of the hydrated cationic oxo-metal ions are reported as well.

Keywords: coordination chemistry; coordination geometry; hydration; metal ions; water


International Conference on Solution Chemistry (ICSC-31), International Conference on Solution Chemistry, ICSC, Solution Chemistry, 31st, Innsbruck, Austria, 2009-08-21–2009-08-25


  • 1

    , D. R. Rosseinsky. Chem. Rev.65, 467 (1965).CrossrefGoogle Scholar

  • 2

    C. G. Phillips, R. J. P. Williams. Inorganic Chemistry, Vol. 1, p. 161, Clarendon Press, New York (1965).Google Scholar

  • 3

    , R. G. Pearson. J. Am. Chem. Soc.85, 3533 (1963).CrossrefGoogle Scholar

  • 4

    , J. K. Beattie, S. P. Best, B. W. Skelton, A. H. White. J. Chem. Soc., Dalton Trans. 2105 (1981).CrossrefGoogle Scholar

  • 5

    , D. Lundberg, I. Persson, L. Eriksson, P. D’Angelo, S. De Panfilis. Inorg. Chem.49, 4420 (2010).CrossrefGoogle Scholar

  • 6

    , R. Ireland, P. Wipf, J. Armstrong. J. Org. Chem.56, 650 (1991).CrossrefGoogle Scholar

  • 7

    , J. Näslund, I. Persson, M. Sandström. Inorg. Chem.39, 4012 (2000).CrossrefGoogle Scholar

  • 8

    Inorganic Crystal Structure Database 1.4.6, Release 2009-1, FIZ Karlsruhe (2009).Google Scholar

  • 9a

    , F. H. Allen. Acta Crystallogr., Sect. B58, 380 (2002).CrossrefGoogle Scholar

  • 9b

    Cambridge Structure Database, Release 2008.Google Scholar

  • 10

    , H. Ohtaki, T. Radnai. Chem. Rev.93, 1157 (1993) and refs. therein.CrossrefGoogle Scholar

  • 11

    , G. Johansson. Adv. Inorg. Chem.39, 159 (1992) and refs. therein.CrossrefGoogle Scholar

  • 12

    I. Persson. Unpublished data.Google Scholar

  • 13

    , P. D’Angelo, I. Persson. Inorg. Chem.43, 3543 (2004).CrossrefGoogle Scholar

  • 14

    T. Yamaguchi, H. Ohtaki, E. Spohr, G. Palinkas, K. Heinzinger, M. Probst. Z. Naturforsch., A41, 1175 (1986).Google Scholar

  • 15

    , F. Jalilehvand, D. Spångberg, P. Lindqvist-Reis, K. Hermansson, I. Persson, M. Sandström. J. Am. Chem. Soc.123, 431 (2001).CrossrefGoogle Scholar

  • 16

    I. Persson, M. Sandström, H. Yokoyama, M. Chaudhry. Z. Naturforsch., A50, 21 (1995).Google Scholar

  • 17

    , A. Abbasi, P. Lindqvist-Reis, L. Eriksson, D. Sandström, S. Lidin, I. Persson, M. Sandström. Chem.—Eur. J.11, 4065 (2005).CrossrefGoogle Scholar

  • 18

    , P. Lindqvist-Reis, I. Persson, M. Sandström. Dalton Trans. 3868 (2006).CrossrefGoogle Scholar

  • 19

    , P. Lindqvist-Reis, K. Lamble, S. Pattanaik, M. Sandström, I. Persson. J. Phys. Chem. B104, 402 (2000).CrossrefGoogle Scholar

  • 20

    , J. Näslund, P. Lindqvist-Reis, S. Pattanaik, M. Sandström, I. Persson. Inorg. Chem.39, 4006 (2000).CrossrefGoogle Scholar

  • 21

    , H. Tachikawa, T. Ichikawa, H. Yoshida. J. Am. Chem. Soc.112, 977 (1990).CrossrefGoogle Scholar

  • 22

    , C. Hagfeldt, V. Kessler, I. Persson. Dalton Trans. 2142 (2004).CrossrefGoogle Scholar

  • 23

    , H. Loeffler, J. Iglesias Yagüe, B. M. Rode. Chem. Phys. Lett.363, 367 (2002).CrossrefGoogle Scholar

  • 24

    , T. Miyanaga, I. Watanabe, S. Ikeda. Chem. Lett. 1073 (1988).CrossrefGoogle Scholar

  • 25

    , S. P. Cramer, P. K. Eidem, M. T. Pafett, J. R. Winkler, Z. Dori, H. B. Gray. J. Am. Chem. Soc.105, 799 (1983).CrossrefGoogle Scholar

  • 26

    , P. Lindqvist-Reis, S. Diaz-Moreno, A. Munoz-Páez, S. Pattanaik, I. Persson, M. Sandström. Inorg. Chem.37, 6675 (1998), and refs. therein.CrossrefGoogle Scholar

  • 27

    , M. Brorson, M. Gajhede. Inorg. Chem.26, 2109 (1987).CrossrefGoogle Scholar

  • 28

    , D. Lundberg, A.-S. Ullström, P. D’Angelo, I. Persson. Inorg. Chim. Acta360, 1809 (2007).CrossrefGoogle Scholar

  • 29

    M. Taimisto, R. Oilunkaniemi, R. S. Laitinen, M. Ahlgren. Z. Naturforsch., B58, 959 (2003).Google Scholar

  • 30

    , S. P. Best, J. Bruce Forsyth. J. Chem. Soc., Dalton Trans. 3507 (1990).CrossrefGoogle Scholar

  • 31

    , P. Bernhard, H.-B. Bürgi, J. Hauser, H. Lehmann, A. Ludi. Inorg. Chem.21, 3936 (1982).CrossrefGoogle Scholar

  • 32

    , R. Caminiti, D. Atzei, P. Cucca, A. Anedda, G. Bongiovanni. J. Phys. Chem.90, 238 (1986).CrossrefGoogle Scholar

  • 33

    , M. C. Read, M. Sandström. Acta Chem. Scand.46, 1177 (1992).CrossrefGoogle Scholar

  • 34

    , R. S. Armstrong, J. K. Beattie, S. P. Best, B. W. Skelton, A. H. White. J. Chem. Soc., Dalton Trans. 1973 (1983).CrossrefGoogle Scholar

  • 35

    , O. Kristiansson, I. Persson, D. Bobicz, D. Xu. Inorg. Chim Acta344, 15 (2003).CrossrefGoogle Scholar

  • 36

    , T. S. Hofer, B. R. Randolf, A. Ali Shah, B. M. Rode, I. Persson. Chem. Phys Lett.445, 193 (2007).CrossrefGoogle Scholar

  • 37

    , E. C. Beret, R. R. Pappalardo, N. L. Doltsinis, D. Marx, E. S. Marcos. ChemPhysChem9, 237 (2008).CrossrefGoogle Scholar

  • 38

    J. Purans, B. Fourest, C. Cannes, V. Sladkov, F. David, L. Venault, M. Lecomte. J. Chem. Phys. B109, 11074 (2005).Google Scholar

  • 39

    , F. Jalilehvand, L. J. Laffin. Inorg. Chem.47, 3248 (2008).CrossrefGoogle Scholar

  • 40

    , T. S. Hofer, B. R. Randolf, B. M. Rode, I. Persson. Dalton Trans. 1512 (2009).CrossrefGoogle Scholar

  • 41

    , I. Persson, J. E. Penner-Hahn, K. O. Hodgson. Inorg. Chem.32, 2497 (1993).CrossrefGoogle Scholar

  • 42

    , I. Persson, P. Persson, M. Sandström, A.-S. Ullström. J. Chem. Soc., Dalton Trans. 1256 (2002) and refs. therein.CrossrefGoogle Scholar

  • 43

    , J. Chaboy, A. Munoz-Paez, P. J. Merkling, E. S. Marcos. J. Chem. Phys.124, 064509 (2006).CrossrefGoogle Scholar

  • 44

    , V. S. Bryantsev, M. S. Diallo, A. C. T. van Duin, W. A. Goddard III. J. Phys. Chem. A112, 9104 (2008).CrossrefGoogle Scholar

  • 45

    , I. Persson, K. B. Nilsson. Inorg. Chem.45, 7428 (2006).CrossrefGoogle Scholar

  • 46

    , I. Persson, L. Eriksson, P. Lindqvist-Reis, P. Persson, M. Sandström. Chem.—Eur. J.14, 6687 (2008).CrossrefGoogle Scholar

  • 47

    , J. Glaser, G. Johansson. Acta Chem. Scand., Ser. A36a, 125 (1982).CrossrefGoogle Scholar

  • 48

    , J. Blixt, J. Glaser, J. Mink, I. Persson, P. Persson, M. Sandström. J. Am. Chem. Soc.117, 5089 (1995).CrossrefGoogle Scholar

  • 49

    , I. Persson, F. Jalilehvand, M. Sandström. Inorg. Chem.41, 192 (2002).CrossrefGoogle Scholar

  • 50

    , I. Persson, P. D’Angelo, S. De Panfilis, M. Sandström, L. Eriksson. Chem.—Eur. J.14, 3056 (2008) and refs. therein.CrossrefGoogle Scholar

  • 51

    P. D’Angelo, A. Zitalo, V. Migliorati, G. Mancini, I. Persson, G. Chillemi. Chem.—Eur. J.16 682 (2010).Google Scholar

  • 52

    , P. G. Allen, J. J. Bucher, D. K. Shuh, N. M. Edelstein, I. Craig. Inorg. Chem.39, 595 (2000).CrossrefGoogle Scholar

  • 53

    , J. H. Matonic, B. L. Scott, M. P. Neu. Inorg. Chem.40, 2638 (2001).CrossrefGoogle Scholar

  • 54

    , P. Lindqvist-Reis, C. Apostolidis, J. Rebizant, A. Morgenstern, R. Klenze, O. Walter, T. Fanghaenel, R. G. Haire. Angew. Chem., Int. Ed.46, 919 (2007).CrossrefGoogle Scholar

  • 55

    , S. Skanthakumar, M. R. Antonio, R. E. Wilson, L. Soderholm. Inorg. Chem.46, 3485 (2007).CrossrefGoogle Scholar

  • 56

    , N. Torapava, I. Persson, L. Eriksson, D. Lundberg. Inorg. Chem.48, 11712 (2009).CrossrefGoogle Scholar

  • 57

    , H. Moll, M. A. Denecke, F. Jalilehvand, M. Sandström, I. Grenthe. Inorg. Chem.38, 1795 (1999).CrossrefGoogle Scholar

  • 58

    , A. Ikeda-Ohno, C. Hennig, A. Rossberg, H. Fune, A. C. Scheinost, G. Bernhard, T. Yaita. Inorg. Chem.47, 8294 (2008).CrossrefGoogle Scholar

  • 59

    , P. G. Allen, J. J. Bucher, D. K. Shuh, N. M. Edelstein, T. Reich. Inorg. Chem.36, 4676 (1997).CrossrefGoogle Scholar

  • 60

    , S. D. Conradson, K. D. Abney, B. D. Begg, E. D. Brady, D. L. Clark, C. den Auwer, M. Ding, P. K. Dorhout, F. J. Espinosa-Faller, P. L. Gordon, R. G. Haire, N. J. Hess, R. F. Hess, D. W. Keogh, G. H. Lander, A. J. Lupinetti, L. A. Morales, M. P. Neu, P. D. Palmer, P. Paviet-Hartmann, S. D. Reilly, W. H. Runde, C. D. Tait, D. K. Veirs, F. Wastin. Inorg. Chem.43, 116 (2004).CrossrefGoogle Scholar

  • 61

    S. D. Conradson, D. L. Clark, M. P. Neu, W. H. Runde, C. D. Tait. Los Alamos Sci.26, 418 (2000).Google Scholar

  • 62

    , M. Åberg, D. Ferri, J. Glaser, I. Grenthe. Inorg. Chem.22, 3986 (1983).CrossrefGoogle Scholar

  • 63a

    , R. D. Shannon. Acta Crystallogr., Sect. A32, 751 (1976).CrossrefGoogle Scholar

  • 63b

    , R. D. Shannon, C. T. Prewitt. Acta Crystallogr., Sect. B25, 925 (1969).CrossrefGoogle Scholar

  • 64

    , G. Moreau, L. Helm, J. Purans, A. E. Merbach. J. Phys. Chem. A106, 3034 (2002).CrossrefGoogle Scholar

  • 65

    , J. Sygusch. Acta Crystallogr., Sect. B30, 662 (1974).CrossrefGoogle Scholar

  • 66

    , M. A. S. Aquino, W. Clegg, Q.-T. Liu, A. G. Sykes. Acta Crystallogr., Sect. C51, 560 (1995).CrossrefGoogle Scholar

  • 67

    , J. Rosdahl, I. Persson, L. Kloo, K. Ståhl. Inorg. Chim. Acta357, 2624 (2004).CrossrefGoogle Scholar

  • 68

    I. B. Bersuker. Electronic Structure and Properties of Transition Metal Compounds, Chaps. 7.3 and 9.4, Wiley-Interscience, New York (1996).Google Scholar

  • 69

    , F. Bramsen, A. D. Bond, C. J. McKenzie. Acta Crystallogr., Sect. E59, i105 (2003).CrossrefGoogle Scholar

  • 70

    , R. Song, K. M. Kim, Y. S. Sohn. Inorg. Chim. Acta304, 156 (2000).CrossrefGoogle Scholar

  • 71

    , T. C. W. Mak, C. H. L. Kennard, G. Smith, E. J. O’Reilly, D. S. Sagatys, J. C. Fulwood. Polyhedron6, 855 (1987).CrossrefGoogle Scholar

  • 72

    , C. Yue, Z. Lin, L. Chen, F. Jiang, M. Hong. J. Mol. Struct.779, 16 (2005).CrossrefGoogle Scholar

  • 73

    , Y. Kajikawa, N. Azuma, K. Tajima. Inorg. Chim. Acta288, 90 (1999).CrossrefGoogle Scholar

  • 74

    , O. Guillou, P. Bergerat, O. Kahn, E. Bakalbassis, K. Boubekeur, P. Batail, M. Guillot. Inorg. Chem.31, 110 (1992).CrossrefGoogle Scholar

  • 75

    , V. Shivaiah, S. K. Das. Angew. Chem., Int. Ed.45, 245 (2006).CrossrefGoogle Scholar

  • 76

    , T. C. W. Mak, C. H. L. Kennard, G. Smith, E. J. O’Reilly, D. S. Sagatys, J. C. Fulwood. Polyhedron6, 855 (1987).CrossrefGoogle Scholar

  • 77

    , A. Pasquarello, I. Petri, P. S. Salmon, O. Parisel, R. Car, E. Toth, D. H. Powell, H. F. Fischer, L. Helm, A. E. Merbach. Science291, 856 (2001).CrossrefGoogle Scholar

  • 78

    , M. Benfatto, P. D’Angelo, S. D. Longa, N. V. Pavel. Phys. Rev. B65, 174205 (2002).CrossrefGoogle Scholar

  • 79

    , P. Frank, M. Benfatto, R. K. Szilagyi, P. D’Angelo, S. D. Longa, K. O. Hodgson. Inorg. Chem.44, 1922 (2005).CrossrefGoogle Scholar

  • 80

    , S. Ray, A. Zalkin, D. H. Templeton. Acta Crystallogr., Sect. B29, 2748 (1973).CrossrefGoogle Scholar

  • 81

    , A. C. Blackburn, J. C. Gallucci, R. E. Gerkin. Acta Crystallogr., Sect. C47, 2019 (1991).CrossrefGoogle Scholar

  • 82

    , F. A. Cotton, L. R. Falvello, C. A. Murillo, J. F. Quesada. J. Solid State Chem.96, 192 (1992).CrossrefGoogle Scholar

  • 83

    , M. A. Araya, F. A. Cotton, L. M. Daniels, L. R. Favello, C. A. Murillo. Inorg. Chem.32, 4853 (1993).CrossrefGoogle Scholar

  • 84

    , B. N. Figgis, E. S. Kucharski, P. A. Reynolds. Acta Crystallogr., Sect. B46, 577 (1990).CrossrefGoogle Scholar

  • 85

    , G. Johansson, M. Sandström. Acta Chem. Scand., Ser. A32a, 109 (1978).CrossrefGoogle Scholar

  • 86

    , A. Molla-Abbassi, L. Eriksson, P. Lindqvist-Reis, J. Mink, I. Persson, M. Sandström, M. Skripkin, A.-S. Ullström. J. Chem. Soc., Dalton Trans. 4357 (2002).CrossrefGoogle Scholar

  • 87

    , L. E. Orgel. J. Chem. Soc. 4186 (1958).CrossrefGoogle Scholar

  • 88

    R. S. Nyholm. J. Chem. Soc., Proc. 273 (1961).Google Scholar

  • 89

    I. B. Bersuker. The Jahn–Teller Effect and Vibronic Interactions in Modern Chemistry, Chaps. 1–5, Plenum, New York (1984).Google Scholar

  • 90

    I. B. Bersuker, V. Z. Polinger. Vibronic Interactions in Molecules and Crystals, Chaps. 3 and 4, Springer-Verlag, Berlin (1989).Google Scholar

  • 91

    , D. Strömberg, M. Sandström, U. Wahlgren. Chem. Phys. Lett.172, 49 (1990).CrossrefGoogle Scholar

  • 92

    , G. Meyer, P. Nockemann. Z. Anorg. Allg. Chem.629, 1447 (2003).CrossrefGoogle Scholar

  • 93

    , T. Yamaguchi, G. Johansson, B. Holmberg, M. Maeda, H. Ohtaki. Acta Chem. Scand., Ser A38a, 437 (1984).CrossrefGoogle Scholar

  • 94

    , M. Maeda, Y. Maegawa, T. Yamaguchi, H. Wakita. Bull. Chem. Soc. Jpn.52, 2545 (1979).CrossrefGoogle Scholar

  • 95

    , M. Sandström, G. W. Neilson, G. Johansson, T. Yamaguchi. J. Phys. C, Solid State Phys.18, L1115 (1985).CrossrefGoogle Scholar

  • 96

    , T. Yamaguchi, O. Lindqvist, J. B. Boyce, T. Claesson. Acta Chem. Scand., Ser A38a, 423 (1984).CrossrefGoogle Scholar

  • 97

    , T. M. Seward, C. M. B. Henderson, J. M. Charnock, B. R. Dobson. Geochim. Cosmochim. Acta60, 2273 (1996).CrossrefGoogle Scholar

  • 98

    S. Moreno-Diaz. Doctoral thesis, University of Seville, Seville (1998).Google Scholar

  • 99

    , V. Dubois, P. Archirel, A. Boutin. J. Phys. Chem. B105, 9363 (2001).CrossrefGoogle Scholar

  • 100

    , R. Armunanto, C. F. Schwenk, B. M. Rode. J. Phys. Chem. A107, 3132 (2003).CrossrefGoogle Scholar

  • 101

    , Ö. Gröning, T. Drakenberg, L. I. Elding. Inorg. Chem.21, 1820 (1982).CrossrefGoogle Scholar

  • 102

    , A.-V. Mudring, F. Rieger. Inorg. Chem.44, 6240 (2005) and refs. therein.CrossrefGoogle Scholar

  • 103

    , L. Shimoni-Livny, J. P. Glusker, C. W. Bock. Inorg. Chem.37, 1853 (1998) and refs. therein.CrossrefGoogle Scholar

  • 104

    , D. L. Reger, T. D. Wright, C. A. Little, J. J. S. Lamba, M. D. Smith. Inorg. Chem.40, 3810 (2001).CrossrefGoogle Scholar

About the article

Published Online: 2010-08-06

Published in Print: 2010-08-06

Citation Information: Pure and Applied Chemistry, Volume 82, Issue 10, Pages 1901–1917, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-09-10-22.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Rasim Alosmanov, Jennet Imanova, Karol Wolski, Ralf Ziemmermann, Sylwia Fiejdasz, Janusz Przewoźnik, Kamil Goc, Czesław Kapusta, Szczepan Zapotoczny, and Michał Szuwarzyński
Materials, 2018, Volume 11, Number 12, Page 2595
Monika Filipenska, Petra Vasatova, Lenka Pivokonska, Lenka Cermakova, Andrea Gonzalez-Torres, Rita K. Henderson, Jana Naceradska, and Martin Pivokonsky
Journal of Environmental Sciences, 2018
Alexey N. Masliy, Tatiana N. Grishaeva, and Andrey M. Kuznetsov
International Journal of Quantum Chemistry, 2018, Page e25877
Mohammed F. Hamza, Yuezhou Wei, H.I. Mira, Adel A.-H. Abdel-Rahman, and Eric Guibal
Chemical Engineering Journal, 2018
M. M. Samsonenko, O. I. Zakutevskyy, S. V. Khalameida, J. Skubiszewska-Zięba, and M. F. Kovtun
Himia, Fizika ta Tehnologia Poverhni, 2018, Volume 9, Number 4, Page 383
Alexander Smith, Plinio Maroni, Michal Borkovec, and Gregor Trefalt
Colloids and Interfaces, 2018, Volume 2, Number 4, Page 65
Jason M. Stevens, Ana Cristina Parra-Rivera, Darryl D. Dixon, Gregory L. Beutner, Albert J. DelMonte, Doug E. Frantz, Jacob M. Janey, James Paulson, and Michael R. Talley
The Journal of Organic Chemistry, 2018
E. Ofer-Rozovsky, M. Arbel Haddad, G. Bar-Nes, E.J.C. Borojovitz, A. Binyamini, A. Nikolski, and A. Katz
Journal of Nuclear Materials, 2018
Iso Christl
Environmental Chemistry, 2018, Volume 15, Number 6, Page 317
Rubel Chakravarty, Samatha Bevara, Jitendra Bahadur, Sudipta Chakraborty, Haladhar Dev Sarma, S. Nagabhusan Achary, Ashutosh Dash, and Avesh Kumar Tyagi
ChemistrySelect, 2018, Volume 3, Number 38, Page 10670
Stephen A. Giles, Jon C. Wilson, Jared Nash, Bingjun Xu, Dionisios G. Vlachos, and Yushan Yan
Journal of Catalysis, 2018
Dominik Reichartzeder, Manfred Wildner, Matthias Weil, Sergey Ivanov, Adam Stash, and Yu-Sheng Chen
European Journal of Inorganic Chemistry, 2018
Gabriel G. Arantes de Carvalho, Denise F. S. Petri, and Pedro V. Oliveira
Analytical Methods, 2018
M. C. Turk, D. E. Simpson, and D. Roy
ECS Journal of Solid State Science and Technology, 2013, Volume 2, Number 11, Page P498
Amal El-Halah, Daniel Machado, Nain González, Jesús Contreras, and Francisco López-Carrasquero
Journal of Applied Polymer Science, 2018, Page 46999
Zhifeng Jing, Chengwen Liu, Rui Qi, and Pengyu Ren
Proceedings of the National Academy of Sciences, 2018, Page 201805049
B. Lothenbach, D. Nied, E. L'Hôpital, G. Achiedo, and A. Dauzères
Cement and Concrete Research, 2015, Volume 77, Page 60
Andrey M. Kuznetsov, Alexey N. Masliy, and Gregory V. Korshin
Journal of Molecular Modeling, 2018, Volume 24, Number 8
Alejandra Monjaraz-Rodríguez, Mariano Rodriguez-Bautista, Jorge Garza, Rafael A. Zubillaga, and Rubicelia Vargas
Journal of Molecular Modeling, 2018, Volume 24, Number 7
Simon A. Cotton
Comments on Inorganic Chemistry, 2018
M. F. Attallah, S. E. Rizk, and E. M. El Afifi
Journal of Radioanalytical and Nuclear Chemistry, 2018
Hollie Ashworth, Liam Abrahamsen-Mills, Nick Bryan, Lynn Foster, Jonathan R. Lloyd, Simon Kellet, and Sarah Heath
Environmental Science: Processes & Impacts, 2018
Aditya Rajeev Kaveeshwar, Ponnusamy Senthil Kumar, Emmanuel D. Revellame, Daniel D. Gang, Mark E. Zappi, and Ramalingam Subramaniam
Journal of Cleaner Production, 2018
Marta Zatoń, Benedicte Prélot, Nicolas Donzel, Jacques Rozière, and Deborah J. Jones
Journal of The Electrochemical Society, 2018, Volume 165, Number 6, Page F3281
Haidai Hu, Ákos Nemecz, Catherine Van Renterghem, Zaineb Fourati, Ludovic Sauguet, Pierre-Jean Corringer, and Marc Delarue
Proceedings of the National Academy of Sciences, 2018, Page 201717700
Canrong Qiu, Frantisek Majs, Peter J. Eng, Joanne E. Stubbs, Thomas A. Douglas, Moritz Schmidt, and Thomas P. Trainor
Journal of Colloid and Interface Science, 2018
P. Cereceda-Company and J. L. Costa-Krämer
Journal of The Electrochemical Society, 2018, Volume 165, Number 5, Page D167
Eszter Boros and Jason P. Holland
Journal of Labelled Compounds and Radiopharmaceuticals, 2018
Mohammed F Hamza, Adel A-H Abdel-Rahman, and Eric Guibal
Journal of Chemical Technology & Biotechnology, 2018
Yen-Ting Kuo, Ju-Shiou Chen, Tzu-Yueh Yang, and Hou-Peng Wan
Applied Energy, 2018, Volume 215, Page 426
Christina Klinkhammer, Fabian Böhm, Vinay Sharma, Gerhard Schwaab, Michael Seitz, and Martina Havenith
The Journal of Chemical Physics, 2018, Volume 148, Number 22, Page 222802
Brian A. Omondi, Hirotaka Okabe, Yoshiki Hidaka, and Kazuhiro Hara
Reactive and Functional Polymers, 2018, Volume 125, Page 11
B. Sizirici and I. Yildiz
International Journal of Environmental Science and Technology, 2018
Antonio Gil, Mohammad Javad Amiri, Jahangir Abedi-Koupai, and Saeid Eslamian
Environmental Science and Pollution Research, 2017
Chengliang Xiao, Zohreh Hassanzadeh Fard, Debajit Sarma, Tze-Bin Song, Chao Xu, and Mercouri G. Kanatzidis
Journal of the American Chemical Society, 2017
Ammar Al Helal, Adam Soames, Rolf Gubner, Stefan Iglauer, and Ahmed Barifcani
Journal of Colloid and Interface Science, 2017
Yijue Diao, Mengwei Han, Josue A. Lopez-Berganza, Lauren Valentino, Benito Marinas, and Rosa M. Espinosa-Marzal
Langmuir, 2017
Tahir Mehmood, K. M. Wu, Aiman Mukhtar, Babar S. Khan, Adnan Saeed, Humaira Latif, Zahida Parveen, and Syeda Ruqaya Kazmi
International Journal of Materials Research, 2017, Volume 108, Number 8, Page 688
Pedro Mateus, Barbara Wicher, Yann Ferrand, and Ivan Huc
Chem. Commun., 2017, Volume 53, Number 67, Page 9300
Evgenios Kokkinos, Konstantinos Soukakos, Margaritis Kostoglou, and Manassis Mitrakas
Environmental Science and Pollution Research, 2017
J. I. Martins, J. J. M. Órfão, and O. S. G. P. Soares
Protection of Metals and Physical Chemistry of Surfaces, 2017, Volume 53, Number 4, Page 618
P. Vinoth and P. Sankar
Journal of Molecular Graphics and Modelling, 2017, Volume 76, Page 242
A. Sciortino, A. Madonia, M. Gazzetto, L. Sciortino, E. J. Rohwer, T. Feurer, F. M. Gelardi, M. Cannas, A. Cannizzo, and F. Messina
Nanoscale, 2017, Volume 9, Number 33, Page 11902
Olga Ershova, Kaarlo Nieminen, and Herbert Sixta
ChemCatChem, 2017, Volume 9, Number 15, Page 3031
Shengye Wang, Mohammed F. Hamza, Thierry Vincent, Catherine Faur, and Eric Guibal
Journal of Colloid and Interface Science, 2017, Volume 504, Page 780
M. Arbel Haddad, E. Ofer-Rozovsky, G. Bar-Nes, E.J.C. Borojovich, A. Nikolski, D. Mogiliansky, and A. Katz
Journal of Nuclear Materials, 2017, Volume 493, Page 168
Mohammad Razaul Karim, Md. Saidul Islam, Nurun Nahar Rabin, Hiroshi Takehira, Kosuke Wakata, Masaaki Nakamura, Ryo Ohtani, Kei Toda, and Shinya Hayami
ChemistrySelect, 2017, Volume 2, Number 15, Page 4248
Yuji Arai and Jessica T. Dahle
Journal of Agricultural and Food Chemistry, 2017
Sida Wang, Phil Liebing, Florian Oehler, John W. Gilje, Cristian G. Hrib, and Frank T. Edelmann
Crystal Growth & Design, 2017, Volume 17, Number 6, Page 3402
Kerui Li, Yuanlong Shao, Shiyi Liu, Qinghong Zhang, Hongzhi Wang, Yaogang Li, and Richard B. Kaner
Small, 2017, Volume 13, Number 19, Page 1700380
A. Fallahi, Y. Bahramzadeh, S. E. Tabatabaie, and M. Shahinpoor
International Journal of Intelligent Robotics and Applications, 2017, Volume 1, Number 2, Page 143
Salma Ahmed Alzahrani, Shaeel Ahmed Al-Thabaiti, Wafa Shamsan Al-Arjan, Maqsood Ahmad Malik, and Zaheer Khan
Journal of Molecular Structure, 2017, Volume 1137, Page 495
A. Benettayeb, E. Guibal, A. Morsli, and R. Kessas
Chemical Engineering Journal, 2017, Volume 316, Page 704
Rustem R. Amirov, Julia Shayimova, Zarina Nasirova, and Ayrat M. Dimiev
Carbon, 2017, Volume 116, Page 356
Alma Mejri, Outaf Fliss, and Khaled Alouani
Journal of Electroanalytical Chemistry, 2017, Volume 787, Page 163
Gujie Qian, Yubiao Li, Jun Li, and Andrea R. Gerson
International Journal of Mineral Processing, 2017, Volume 159, Page 42
Rama Pulicharla, Krishnamoorthy Hegde, Satinder Kaur Brar, and Rao Y. Surampalli
Environmental Pollution, 2017, Volume 221, Page 1
Alexander L. Kwiatkowski, Vyacheslav S. Molchanov, Anton S. Orekhov, Alexander L. Vasiliev, and Olga E. Philippova
The Journal of Physical Chemistry B, 2016, Volume 120, Number 49, Page 12547
Michael T. Huxley, Campbell J. Coghlan, Witold M. Bloch, Alexandre Burgun, Christian J. Doonan, and Christopher J. Sumby
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, Volume 375, Number 2084, Page 20160028
Chao Ning, Meng Xu, David Chi-Wai Hui, Carol Sze Ki Lin, and Gordon McKay
Chemical Engineering Journal, 2017, Volume 311, Page 37
Filipe Simões Teodoro, Oscar Fernando Herrera Adarme, Laurent Frédéric Gil, and Leandro Vinícius Alves Gurgel
Journal of Colloid and Interface Science, 2017, Volume 487, Page 266
Joël Brugger, Weihua Liu, Barbara Etschmann, Yuan Mei, David M. Sherman, and Denis Testemale
Chemical Geology, 2016, Volume 447, Page 219
Noelia Morales, Elsa Galbis, José M. Martínez, Rafael R. Pappalardo, and Enrique Sánchez Marcos
The Journal of Physical Chemistry Letters, 2016, Volume 7, Number 21, Page 4275
Miha Purg, Anna Pabis, Florian Baier, Nobuhiko Tokuriki, Colin Jackson, and Shina Caroline Lynn Kamerlin
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, Volume 374, Number 2080, Page 20160150
Ki Yong Jee, Nowon Kim, and Yong Taek Lee
Journal of Industrial and Engineering Chemistry, 2016, Volume 44, Page 155
D. M. R. E. A. Dissanayake, P. K. D. Chathuranga, P. I. Perera, M. Vithanage, and M. C. M. Iqbal
Bioremediation Journal, 2016, Volume 20, Number 3, Page 194
Liva Dzene, Eric Ferrage, Fabien Hubert, Alfred Delville, and Emmanuel Tertre
Applied Clay Science, 2016, Volume 132-133, Page 205
A. Migdisov, A.E. Williams-Jones, J. Brugger, and F.A. Caporuscio
Chemical Geology, 2016, Volume 439, Page 13
Karolis Vilcinskas, Jure Zlopasa, Kaspar M. B. Jansen, Fokko M. Mulder, Stephen J. Picken, and Ger J. M. Koper
Macromolecular Materials and Engineering, 2016, Volume 301, Number 9, Page 1049
Bożena Adrjan, Włodzimierz Makulski, Karol Jackowski, Taye B. Demissie, Kenneth Ruud, Andrej Antušek, and Michał Jaszuński
Phys. Chem. Chem. Phys., 2016, Volume 18, Number 24, Page 16483
Youngho Eom, Tae Woo Kim, and Byoung Chul Kim
Macromolecular Research, 2016, Volume 24, Number 5, Page 450
G. Durán-Jiménez, V. Hernández-Montoya, M.A. Montes-Morán, J.R. Rangel-Méndez, and R. Tovar-Gómez
Journal of Molecular Liquids, 2016, Volume 220, Page 855
Jaewoo Park, Paul Bazylewski, and Giovanni Fanchini
Nanoscale, 2016, Volume 8, Number 18, Page 9563
Evgeny A. Karpushkin, Mikhail V. Artemov, and Vladimir G. Sergeyev
Mendeleev Communications, 2016, Volume 26, Number 2, Page 117
Nicolò Campagnol, Tom R. C. Van Assche, Minyuan Li, Linda Stappers, Mircea Dincă, Joeri F. M. Denayer, Koen Binnemans, Dirk E. De Vos, and Jan Fransaer
J. Mater. Chem. A, 2016, Volume 4, Number 10, Page 3914
Jogi Ganesh Dattatreya Tadimeti and Sujay Chattopadhyay
Desalination, 2016, Volume 385, Page 93
Jayce J. Cheng, Samuel M. Nicaise, Karl K. Berggren, and Silvija Gradečak
Nano Letters, 2016, Volume 16, Number 1, Page 753
Gregory N. Smith, Paul Brown, Craig James, Roger Kemp, Asad Muhammad Khan, Tomás S. Plivelic, Sarah E. Rogers, and Julian Eastoe
Journal of Colloid and Interface Science, 2016, Volume 465, Page 316
Xueyun Han and Yufeng Peng
Optik - International Journal for Light and Electron Optics, 2016, Volume 127, Number 3, Page 1455
Wei Hua, Dominique Verreault, and Heather C. Allen
ChemPhysChem, 2015, Volume 16, Number 18, Page 3910
Jian Zhang, Yuguo Xia, Li Zhang, Dairong Chen, and Xiuling Jiao
Phys. Chem. Chem. Phys., 2015, Volume 17, Number 41, Page 27391
G. La Penna, V. Minicozzi, S. Morante, G. C. Rossi, and F. Stellato
The Journal of Chemical Physics, 2015, Volume 143, Number 12, Page 124508
Mark A. Farrugia, Beibei Wang, Michael Feig, and Robert P. Hausinger
Biochemistry, 2015, Volume 54, Number 41, Page 6392
Lili Jiang, Haitao Yu, Xiaomeng Zhou, Xingang Hou, Zongshu Zou, Shujun Li, Chuantong Li, and Xiayan Yao
Desalination and Water Treatment, 2016, Volume 57, Number 39, Page 18446
Shubin Yang, Naoya Okada, and Masaaki Nagatsu
Journal of Hazardous Materials, 2016, Volume 301, Page 8
Lynsey Dunbar, Rebecca J. Sowden, Katherine D. Trotter, Michelle K. Taylor, David Smith, Alan R. Kennedy, John Reglinski, and Corinne M. Spickett
BioMetals, 2015, Volume 28, Number 5, Page 903
Fabian Böhm, Vinay Sharma, Gerhard Schwaab, and Martina Havenith
Phys. Chem. Chem. Phys., 2015, Volume 17, Number 29, Page 19582
Prabhu Narayanaswamy Venkatesan and Sangeetha Dharmalingam
Journal of Materials Science, 2015, Volume 50, Number 19, Page 6302
Prabhu Narayanaswamy Venkatesan and Sangeetha Dharmalingam
Journal of Membrane Science, 2015, Volume 492, Page 518
Xiaoqing Wang, Liangliang Zhang, Jie Yang, Fuling Liu, Fangna Dai, Rongming Wang, and Daofeng Sun
J. Mater. Chem. A, 2015, Volume 3, Number 24, Page 12777
Masato Yoshioka, Toshiyuki Yokoi, and Takashi Tatsumi
ACS Catalysis, 2015, Volume 5, Number 7, Page 4268
Maryam Mohammadi, Kerstin Forsberg, Lars Kloo, Joaquin Martinez De La Cruz, and Åke Rasmuson
Hydrometallurgy, 2015, Volume 156, Page 215
Qianqian Cai, Brett D. Turner, Daichao Sheng, and Scott Sloan
Journal of Contaminant Hydrology, 2015, Volume 177-178, Page 136
S. A. Ovalle-Serrano, V. S. Carrillo, C. Blanco-Tirado, J. P. Hinestroza, and M. Y. Combariza
Cellulose, 2015, Volume 22, Number 3, Page 1841
Indraneel S. Zope, Aravind Dasari, and Giovanni Camino
Materials Chemistry and Physics, 2015, Volume 157, Page 69
Seyed Mostafa Jafari Raad, Reza Azin, and Shahriar Osfouri
Heat and Mass Transfer, 2015, Volume 51, Number 11, Page 1587
Moni U. Khobragade and Anjali Pal
Journal of Environmental Science and Health, Part A, 2015, Volume 50, Number 4, Page 385
Patrick Frank, Maurizio Benfatto, Munzarin Qayyam, Britt Hedman, and Keith O. Hodgson
The Journal of Chemical Physics, 2015, Volume 142, Number 8, Page 084310
Zheng Li, Kai Xiang, Wenting Xing, W. Craig Carter, and Yet-Ming Chiang
Advanced Energy Materials, 2015, Volume 5, Number 5, Page 1401410
Hironori Takeda, Motoyuki Hattori, Tomohiro Nishizawa, Keitaro Yamashita, Syed T. A. Shah, Martin Caffrey, Andrés D. Maturana, Ryuichiro Ishitani, and Osamu Nureki
Nature Communications, 2014, Volume 5, Page 5374
Vinay Sharma, Fabian Böhm, Gerhard Schwaab, and Martina Havenith
Phys. Chem. Chem. Phys., 2014, Volume 16, Number 45, Page 25101
Gegham Galstyan and Ernst-Walter Knapp
Journal of Computational Chemistry, 2015, Volume 36, Number 2, Page 69
Kevin R. Hinkle, Cynthia J. Jameson, and Sohail Murad
The Journal of Physical Chemistry C, 2014, Volume 118, Number 41, Page 23803
Babar Shahzad Khan, Tahir Mehmood, Aiman Mukhtar, and Ming Tan
Materials Letters, 2014, Volume 137, Page 13
Stewart J. Taylor, Mark D. Haw, Jan Sefcik, and Ashleigh J. Fletcher
Langmuir, 2014, Volume 30, Number 34, Page 10231
Asma Hammami, Amal Rabti, and Noureddine Raouafi
Journal of Electroanalytical Chemistry, 2014, Volume 731, Page 179
A. Ryzhikov, I. Khay, H. Nouali, T. J. Daou, and J. Patarin
Phys. Chem. Chem. Phys., 2014, Volume 16, Number 33, Page 17893
Manuela Borchert, Max Wilke, Christian Schmidt, Kristina Kvashnina, and Sandro Jahn
Geochimica et Cosmochimica Acta, 2014, Volume 142, Page 535
Mahdy M. Elmahdy, Astrid Drechsler, Eva Bittrich, Petra Uhlmann, and Manfred Stamm
Colloid and Polymer Science, 2014, Volume 292, Number 8, Page 1999
Nicolò Campagnol, Ricardo Romero-Vara, Willem Deleu, Linda Stappers, Koen Binnemans, Dirk E. De Vos, and Jan Fransaer
ChemElectroChem, 2014, Volume 1, Number 7, Page 1182
Mikołaj Owsianiak, Karin Veltman, Michael Z. Hauschild, A. Jan Hendriks, Zoran J.N. Steinmann, and Mark A.J. Huijbregts
Chemosphere, 2014, Volume 112, Page 487
Mercedes García Bugarín and Ricardo A. Mosquera
Structural Chemistry, 2014, Volume 25, Number 6, Page 1647
Diana Yepes, Robert Seidel, Bernd Winter, Jochen Blumberger, and Pablo Jaque
The Journal of Physical Chemistry B, 2014, Volume 118, Number 24, Page 6850
Shubin Yang, Cho Han, Xiangke Wang, and Masaaki Nagatsu
Journal of Hazardous Materials, 2014, Volume 274, Page 46
Ida Svanedal, Susanne Boija, Ann Almesåker, Gerd Persson, Fredrik Andersson, Erik Hedenström, Dan Bylund, Magnus Norgren, and Håkan Edlund
Langmuir, 2014, Volume 30, Number 16, Page 4605
Fernanda Duarte, Paul Bauer, Alexandre Barrozo, Beat Anton Amrein, Miha Purg, Johan Åqvist, and Shina Caroline Lynn Kamerlin
The Journal of Physical Chemistry B, 2014, Volume 118, Number 16, Page 4351
Seok Min Yoon, Scott C. Warren, and Bartosz A. Grzybowski
Angewandte Chemie International Edition, 2014, Volume 53, Number 17, Page 4437
Seok Min Yoon, Scott C. Warren, and Bartosz A. Grzybowski
Angewandte Chemie, 2014, Volume 126, Number 17, Page 4526
Kenneth A. Rubinson
Journal of Solution Chemistry, 2014, Volume 43, Number 3, Page 453
Sang Jun Kim, Yeob Lee, Dong Ki Lee, Jung Woo Lee, and Jeung Ku Kang
Journal of Materials Chemistry A, 2014, Volume 2, Number 12, Page 4136
O. V. Vashchenko, Yu. L. Ermak, and L. N. Lisetski
Biophysics, 2013, Volume 58, Number 4, Page 515
Holden W. H. Lai, Albert Tianxiang Liu, Bright U. Emenike, William R. Carroll, and John D. Roberts
The Journal of Physical Chemistry A, 2014, Volume 118, Number 11, Page 1965
Md Munan Shaik, Nicholus Bhattacharjee, Anirban Bhattacharjee, Martin J. Field, and Giuseppe Zanotti
Proteins: Structure, Function, and Bioinformatics, 2014, Volume 82, Number 7, Page 1311
Muhammad M.R. Bhuiyan, Shawn D. Lin, and Ting C. Hsiao
Catalysis Today, 2014, Volume 226, Page 150
Sibel Kacmaz, Kadriye Ertekin, Ozlem Oter, Deniz Mercan, Engin Cetinkaya, and Erdal Celik
Journal of Luminescence, 2014, Volume 147, Page 265
Seyed A. Dastgheib, Jianli Ren, Massoud Rostam-Abadi, and Ramsay Chang
Applied Surface Science, 2014, Volume 290, Page 92
Juliana Martins de Souza e Silva, Murilo Pastorello, Jörg Kobarg, Mateus Borba Cardoso, and Italo Odone Mazali
ChemPhysChem, 2013, Volume 14, Number 18, Page 4075
Jian Payandeh, Roland Pfoh, and Emil F. Pai
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2013, Volume 1828, Number 11, Page 2778
Santiago Botasini, Gonzalo Heijo, and Eduardo Méndez
Analytica Chimica Acta, 2013, Volume 800, Page 1
Narottam Sutradhar, Sandip Kumar Pahari, Muthirulandi Jayachandran, A. Manuel Stephan, J. R. Nair, Balasubramanian Subramanian, Hari C. Bajaj, Haresh M. Mody, and Asit Baran Panda
Journal of Materials Chemistry A, 2013, Volume 1, Number 32, Page 9122
Lutfullah, Mohd Rashid, Uzma Haseen, and Nafisur Rahman
Journal of Industrial and Engineering Chemistry, 2014, Volume 20, Number 3, Page 809
Vinay Sharma, Fabian Böhm, Michael Seitz, Gerhard Schwaab, and Martina Havenith
Physical Chemistry Chemical Physics, 2013, Volume 15, Number 21, Page 8383
Li-Na Jia, Lei Hou, Lei Wei, Xiao-Jing Jing, Bo Liu, Yao-Yu Wang, and Qi-Zhen Shi
Crystal Growth & Design, 2013, Volume 13, Number 4, Page 1570
Amanda Beck, Veena Vijayanathan, Thresia Thomas, and T.J. Thomas
Biochimie, 2013, Volume 95, Number 6, Page 1310
V. Hernández-Montoya, M.A. Pérez-Cruz, D.I. Mendoza-Castillo, M.R. Moreno-Virgen, and A. Bonilla-Petriciolet
Journal of Environmental Management, 2013, Volume 116, Page 213
Simone Furini and Carmen Domene
Biophysical Journal, 2012, Volume 103, Number 10, Page 2106
A. Guskov, N. Nordin, A. Reynaud, H. Engman, A.-K. Lundback, A. J. O. Jong, T. Cornvik, T. Phua, and S. Eshaghi
Proceedings of the National Academy of Sciences, 2012, Volume 109, Number 45, Page 18459
Susana Gómez-Salces, Fernando Aguado, Rafael Valiente, and Fernando Rodríguez
Angewandte Chemie International Edition, 2012, Volume 51, Number 37, Page 9335
Susana Gómez-Salces, Fernando Aguado, Rafael Valiente, and Fernando Rodríguez
Angewandte Chemie, 2012, Volume 124, Number 37, Page 9469
David A. Johnson and Peter G. Nelson
Inorganic Chemistry, 2012, Volume 51, Number 11, Page 6116
Peter De Vreese, Neil R. Brooks, Kristof Van Hecke, Luc Van Meervelt, Edward Matthijs, Koen Binnemans, and Rik Van Deun
Inorganic Chemistry, 2012, Volume 51, Number 9, Page 4972
Keyan Li, Min Li, and Dongfeng Xue
The Journal of Physical Chemistry A, 2012, Volume 116, Number 16, Page 4192
Daniel T. Bowron, Elizabeth C. Beret, Eloisa Martin-Zamora, Alan K. Soper, and Enrique Sánchez Marcos
Journal of the American Chemical Society, 2012, Volume 134, Number 2, Page 962
Johan Mähler and Ingmar Persson
Inorganic Chemistry, 2012, Volume 51, Number 1, Page 425
Matteo Farnesi Camellone and Dominik Marx
Phys. Chem. Chem. Phys., 2012, Volume 14, Number 2, Page 937
Simone Furini and Carmen Domene
Journal of Molecular Biology, 2011, Volume 409, Number 5, Page 867

Comments (0)

Please log in or register to comment.
Log in