Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2016: 2.626
5-year IMPACT FACTOR: 3.210

CiteScore 2016: 2.45

SCImago Journal Rank (SJR) 2016: 0.972
Source Normalized Impact per Paper (SNIP) 2016: 1.049

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 82, Issue 10 (Aug 2010)

Issues

Hydrated metal ions in aqueous solution: How regular are their structures?

Ingmar Persson
  • Corresponding author
  • Department of Chemistry, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-08-06 | DOI: https://doi.org/10.1351/PAC-CON-09-10-22

The hydration reaction is defined as the transfer of an ion or neutral chemical species from the gaseous phase into water, Mn+(g) → Mn+(aq). In this process, water molecules bind to metal ions through ion-dipole bonds of mainly electrostatic character. The hydration reaction is always strongly exothermic with increasing heat of hydration with increasing charge density of the ion. The structures of the hydrated metal ions in aqueous solution display a variety of configurations depending on the size and electronic properties of the metal ion. The basic configurations of hydrated metal ions in aqueous solution are tetrahedral, octahedral, square antiprismatic, and tricapped trigonal prismatic. This paper gives an overview of the structures of hydrated metal ions in aqueous solution with special emphasis on those with a non-regular coordination figure. Metal ions without d-electrons in the valance shell form regular aqua complexes with a coordination figure, allowing a maximum number of water molecules to be clustered around the metal ion. This number is dependent on the ratio of the metal ion radius to the atomic radius of oxygen in a coordinated water molecule (1.34 Å). The lighter lanthanoid(III) ions have a regular tricapped trigonal prismatic configuration with the M–O distance to the capping water molecules somewhat longer than to the prismatic ones. However, with increasing atomic number of the lanthanoid(III) ions, an increasing distortion of the capping water molecules is observed, resulting in a partial loss of water molecules in the capping positions for the heaviest lanthanoids. Metal ions with d4 and d9 valance shell electron configuration, as chromium(II) and copper(II), respectively, have Jahn–Teller distorted aqua complexes. Metal ions with low charge and ability to form strong covalent bonds, as silver(I), mercury(II), palladium(II), and platinum(II), often display distorted coordination figures due to the second-order Jahn–Teller effect. Metal ions with d10s2 valence shell electron configuration may have a stereochemically active lone electron pair (hemi-directed complexes) or an inactive one (holo-directed). The hydrated tin(II), lead(II), and thallium(I) ions are hemi-directed in aqueous solution, while the hydrated bismuth(III) ion is holo-directed. The structures of the hydrated cationic oxo-metal ions are reported as well.

Keywords: coordination chemistry; coordination geometry; hydration; metal ions; water

Conference

International Conference on Solution Chemistry (ICSC-31), International Conference on Solution Chemistry, ICSC, Solution Chemistry, 31st, Innsbruck, Austria, 2009-08-21–2009-08-25

References

  • 1

    , D. R. Rosseinsky. Chem. Rev. 65, 467 (1965).CrossrefGoogle Scholar

  • 2

    C. G. Phillips, R. J. P. Williams. Inorganic Chemistry, Vol. 1, p. 161, Clarendon Press, New York (1965).Google Scholar

  • 3

    , R. G. Pearson. J. Am. Chem. Soc. 85, 3533 (1963).CrossrefGoogle Scholar

  • 4

    , J. K. Beattie, S. P. Best, B. W. Skelton, A. H. White. J. Chem. Soc., Dalton Trans. 2105 (1981).CrossrefGoogle Scholar

  • 5

    , D. Lundberg, I. Persson, L. Eriksson, P. D’Angelo, S. De Panfilis. Inorg. Chem. 49, 4420 (2010).CrossrefGoogle Scholar

  • 6

    , R. Ireland, P. Wipf, J. Armstrong. J. Org. Chem. 56, 650 (1991).CrossrefGoogle Scholar

  • 7

    , J. Näslund, I. Persson, M. Sandström. Inorg. Chem. 39, 4012 (2000).CrossrefGoogle Scholar

  • 8

    Inorganic Crystal Structure Database 1.4.6, Release 2009-1, FIZ Karlsruhe (2009).Google Scholar

  • 9a

    , F. H. Allen. Acta Crystallogr., Sect. B 58, 380 (2002).CrossrefGoogle Scholar

  • 9b

    Cambridge Structure Database, Release 2008.Google Scholar

  • 10

    , H. Ohtaki, T. Radnai. Chem. Rev. 93, 1157 (1993) and refs. therein.CrossrefGoogle Scholar

  • 11

    , G. Johansson. Adv. Inorg. Chem. 39, 159 (1992) and refs. therein.CrossrefGoogle Scholar

  • 12

    I. Persson. Unpublished data.Google Scholar

  • 13

    , P. D’Angelo, I. Persson. Inorg. Chem. 43, 3543 (2004).CrossrefGoogle Scholar

  • 14

    T. Yamaguchi, H. Ohtaki, E. Spohr, G. Palinkas, K. Heinzinger, M. Probst. Z. Naturforsch., A 41, 1175 (1986).Google Scholar

  • 15

    , F. Jalilehvand, D. Spångberg, P. Lindqvist-Reis, K. Hermansson, I. Persson, M. Sandström. J. Am. Chem. Soc. 123, 431 (2001).CrossrefGoogle Scholar

  • 16

    I. Persson, M. Sandström, H. Yokoyama, M. Chaudhry. Z. Naturforsch., A 50, 21 (1995).Google Scholar

  • 17

    , A. Abbasi, P. Lindqvist-Reis, L. Eriksson, D. Sandström, S. Lidin, I. Persson, M. Sandström. Chem.—Eur. J. 11, 4065 (2005).CrossrefGoogle Scholar

  • 18

    , P. Lindqvist-Reis, I. Persson, M. Sandström. Dalton Trans. 3868 (2006).CrossrefGoogle Scholar

  • 19

    , P. Lindqvist-Reis, K. Lamble, S. Pattanaik, M. Sandström, I. Persson. J. Phys. Chem. B 104, 402 (2000).CrossrefGoogle Scholar

  • 20

    , J. Näslund, P. Lindqvist-Reis, S. Pattanaik, M. Sandström, I. Persson. Inorg. Chem. 39, 4006 (2000).CrossrefGoogle Scholar

  • 21

    , H. Tachikawa, T. Ichikawa, H. Yoshida. J. Am. Chem. Soc. 112, 977 (1990).CrossrefGoogle Scholar

  • 22

    , C. Hagfeldt, V. Kessler, I. Persson. Dalton Trans. 2142 (2004).CrossrefGoogle Scholar

  • 23

    , H. Loeffler, J. Iglesias Yagüe, B. M. Rode. Chem. Phys. Lett. 363, 367 (2002).CrossrefGoogle Scholar

  • 24

    , T. Miyanaga, I. Watanabe, S. Ikeda. Chem. Lett. 1073 (1988).CrossrefGoogle Scholar

  • 25

    , S. P. Cramer, P. K. Eidem, M. T. Pafett, J. R. Winkler, Z. Dori, H. B. Gray. J. Am. Chem. Soc. 105, 799 (1983).CrossrefGoogle Scholar

  • 26

    , P. Lindqvist-Reis, S. Diaz-Moreno, A. Munoz-Páez, S. Pattanaik, I. Persson, M. Sandström. Inorg. Chem. 37, 6675 (1998), and refs. therein.CrossrefGoogle Scholar

  • 27

    , M. Brorson, M. Gajhede. Inorg. Chem. 26, 2109 (1987).CrossrefGoogle Scholar

  • 28

    , D. Lundberg, A.-S. Ullström, P. D’Angelo, I. Persson. Inorg. Chim. Acta 360, 1809 (2007).CrossrefGoogle Scholar

  • 29

    M. Taimisto, R. Oilunkaniemi, R. S. Laitinen, M. Ahlgren. Z. Naturforsch., B 58, 959 (2003).Google Scholar

  • 30

    , S. P. Best, J. Bruce Forsyth. J. Chem. Soc., Dalton Trans. 3507 (1990).CrossrefGoogle Scholar

  • 31

    , P. Bernhard, H.-B. Bürgi, J. Hauser, H. Lehmann, A. Ludi. Inorg. Chem. 21, 3936 (1982).CrossrefGoogle Scholar

  • 32

    , R. Caminiti, D. Atzei, P. Cucca, A. Anedda, G. Bongiovanni. J. Phys. Chem. 90, 238 (1986).CrossrefGoogle Scholar

  • 33

    , M. C. Read, M. Sandström. Acta Chem. Scand. 46, 1177 (1992).CrossrefGoogle Scholar

  • 34

    , R. S. Armstrong, J. K. Beattie, S. P. Best, B. W. Skelton, A. H. White. J. Chem. Soc., Dalton Trans. 1973 (1983).CrossrefGoogle Scholar

  • 35

    , O. Kristiansson, I. Persson, D. Bobicz, D. Xu. Inorg. Chim Acta 344, 15 (2003).CrossrefGoogle Scholar

  • 36

    , T. S. Hofer, B. R. Randolf, A. Ali Shah, B. M. Rode, I. Persson. Chem. Phys Lett. 445, 193 (2007).CrossrefGoogle Scholar

  • 37

    , E. C. Beret, R. R. Pappalardo, N. L. Doltsinis, D. Marx, E. S. Marcos. ChemPhysChem 9, 237 (2008).CrossrefGoogle Scholar

  • 38

    J. Purans, B. Fourest, C. Cannes, V. Sladkov, F. David, L. Venault, M. Lecomte. J. Chem. Phys. B 109, 11074 (2005).CrossrefGoogle Scholar

  • 39

    , F. Jalilehvand, L. J. Laffin. Inorg. Chem. 47, 3248 (2008).CrossrefGoogle Scholar

  • 40

    , T. S. Hofer, B. R. Randolf, B. M. Rode, I. Persson. Dalton Trans. 1512 (2009).CrossrefGoogle Scholar

  • 41

    , I. Persson, J. E. Penner-Hahn, K. O. Hodgson. Inorg. Chem. 32, 2497 (1993).CrossrefGoogle Scholar

  • 42

    , I. Persson, P. Persson, M. Sandström, A.-S. Ullström. J. Chem. Soc., Dalton Trans. 1256 (2002) and refs. therein.CrossrefGoogle Scholar

  • 43

    , J. Chaboy, A. Munoz-Paez, P. J. Merkling, E. S. Marcos. J. Chem. Phys. 124, 064509 (2006).CrossrefGoogle Scholar

  • 44

    , V. S. Bryantsev, M. S. Diallo, A. C. T. van Duin, W. A. Goddard III. J. Phys. Chem. A 112, 9104 (2008).CrossrefGoogle Scholar

  • 45

    , I. Persson, K. B. Nilsson. Inorg. Chem. 45, 7428 (2006).CrossrefGoogle Scholar

  • 46

    , I. Persson, L. Eriksson, P. Lindqvist-Reis, P. Persson, M. Sandström. Chem.—Eur. J. 14, 6687 (2008).CrossrefGoogle Scholar

  • 47

    , J. Glaser, G. Johansson. Acta Chem. Scand., Ser. A 36a, 125 (1982).CrossrefGoogle Scholar

  • 48

    , J. Blixt, J. Glaser, J. Mink, I. Persson, P. Persson, M. Sandström. J. Am. Chem. Soc. 117, 5089 (1995).CrossrefGoogle Scholar

  • 49

    , I. Persson, F. Jalilehvand, M. Sandström. Inorg. Chem. 41, 192 (2002).CrossrefGoogle Scholar

  • 50

    , I. Persson, P. D’Angelo, S. De Panfilis, M. Sandström, L. Eriksson. Chem.—Eur. J. 14, 3056 (2008) and refs. therein.CrossrefGoogle Scholar

  • 51

    P. D’Angelo, A. Zitalo, V. Migliorati, G. Mancini, I. Persson, G. Chillemi. Chem.—Eur. J. 16 682 (2010).Google Scholar

  • 52

    , P. G. Allen, J. J. Bucher, D. K. Shuh, N. M. Edelstein, I. Craig. Inorg. Chem. 39, 595 (2000).CrossrefGoogle Scholar

  • 53

    , J. H. Matonic, B. L. Scott, M. P. Neu. Inorg. Chem. 40, 2638 (2001).CrossrefGoogle Scholar

  • 54

    , P. Lindqvist-Reis, C. Apostolidis, J. Rebizant, A. Morgenstern, R. Klenze, O. Walter, T. Fanghaenel, R. G. Haire. Angew. Chem., Int. Ed. 46, 919 (2007).CrossrefGoogle Scholar

  • 55

    , S. Skanthakumar, M. R. Antonio, R. E. Wilson, L. Soderholm. Inorg. Chem. 46, 3485 (2007).CrossrefGoogle Scholar

  • 56

    , N. Torapava, I. Persson, L. Eriksson, D. Lundberg. Inorg. Chem. 48, 11712 (2009).CrossrefGoogle Scholar

  • 57

    , H. Moll, M. A. Denecke, F. Jalilehvand, M. Sandström, I. Grenthe. Inorg. Chem. 38, 1795 (1999).CrossrefGoogle Scholar

  • 58

    , A. Ikeda-Ohno, C. Hennig, A. Rossberg, H. Fune, A. C. Scheinost, G. Bernhard, T. Yaita. Inorg. Chem. 47, 8294 (2008).CrossrefGoogle Scholar

  • 59

    , P. G. Allen, J. J. Bucher, D. K. Shuh, N. M. Edelstein, T. Reich. Inorg. Chem. 36, 4676 (1997).CrossrefGoogle Scholar

  • 60

    , S. D. Conradson, K. D. Abney, B. D. Begg, E. D. Brady, D. L. Clark, C. den Auwer, M. Ding, P. K. Dorhout, F. J. Espinosa-Faller, P. L. Gordon, R. G. Haire, N. J. Hess, R. F. Hess, D. W. Keogh, G. H. Lander, A. J. Lupinetti, L. A. Morales, M. P. Neu, P. D. Palmer, P. Paviet-Hartmann, S. D. Reilly, W. H. Runde, C. D. Tait, D. K. Veirs, F. Wastin. Inorg. Chem. 43, 116 (2004).CrossrefGoogle Scholar

  • 61

    S. D. Conradson, D. L. Clark, M. P. Neu, W. H. Runde, C. D. Tait. Los Alamos Sci. 26, 418 (2000).Google Scholar

  • 62

    , M. Åberg, D. Ferri, J. Glaser, I. Grenthe. Inorg. Chem. 22, 3986 (1983).CrossrefGoogle Scholar

  • 63a

    , R. D. Shannon. Acta Crystallogr., Sect. A 32, 751 (1976).CrossrefGoogle Scholar

  • 63b

    , R. D. Shannon, C. T. Prewitt. Acta Crystallogr., Sect. B 25, 925 (1969).CrossrefGoogle Scholar

  • 64

    , G. Moreau, L. Helm, J. Purans, A. E. Merbach. J. Phys. Chem. A 106, 3034 (2002).CrossrefGoogle Scholar

  • 65

    , J. Sygusch. Acta Crystallogr., Sect. B 30, 662 (1974).CrossrefGoogle Scholar

  • 66

    , M. A. S. Aquino, W. Clegg, Q.-T. Liu, A. G. Sykes. Acta Crystallogr., Sect. C 51, 560 (1995).CrossrefGoogle Scholar

  • 67

    , J. Rosdahl, I. Persson, L. Kloo, K. Ståhl. Inorg. Chim. Acta 357, 2624 (2004).CrossrefGoogle Scholar

  • 68

    I. B. Bersuker. Electronic Structure and Properties of Transition Metal Compounds, Chaps. 7.3 and 9.4, Wiley-Interscience, New York (1996).Google Scholar

  • 69

    , F. Bramsen, A. D. Bond, C. J. McKenzie. Acta Crystallogr., Sect. E 59, i105 (2003).CrossrefGoogle Scholar

  • 70

    , R. Song, K. M. Kim, Y. S. Sohn. Inorg. Chim. Acta 304, 156 (2000).CrossrefGoogle Scholar

  • 71

    , T. C. W. Mak, C. H. L. Kennard, G. Smith, E. J. O’Reilly, D. S. Sagatys, J. C. Fulwood. Polyhedron 6, 855 (1987).CrossrefGoogle Scholar

  • 72

    , C. Yue, Z. Lin, L. Chen, F. Jiang, M. Hong. J. Mol. Struct. 779, 16 (2005).CrossrefGoogle Scholar

  • 73

    , Y. Kajikawa, N. Azuma, K. Tajima. Inorg. Chim. Acta 288, 90 (1999).CrossrefGoogle Scholar

  • 74

    , O. Guillou, P. Bergerat, O. Kahn, E. Bakalbassis, K. Boubekeur, P. Batail, M. Guillot. Inorg. Chem. 31, 110 (1992).CrossrefGoogle Scholar

  • 75

    , V. Shivaiah, S. K. Das. Angew. Chem., Int. Ed. 45, 245 (2006).CrossrefGoogle Scholar

  • 76

    , T. C. W. Mak, C. H. L. Kennard, G. Smith, E. J. O’Reilly, D. S. Sagatys, J. C. Fulwood. Polyhedron 6, 855 (1987).CrossrefGoogle Scholar

  • 77

    , A. Pasquarello, I. Petri, P. S. Salmon, O. Parisel, R. Car, E. Toth, D. H. Powell, H. F. Fischer, L. Helm, A. E. Merbach. Science 291, 856 (2001).CrossrefGoogle Scholar

  • 78

    , M. Benfatto, P. D’Angelo, S. D. Longa, N. V. Pavel. Phys. Rev. B 65, 174205 (2002).CrossrefGoogle Scholar

  • 79

    , P. Frank, M. Benfatto, R. K. Szilagyi, P. D’Angelo, S. D. Longa, K. O. Hodgson. Inorg. Chem. 44, 1922 (2005).CrossrefGoogle Scholar

  • 80

    , S. Ray, A. Zalkin, D. H. Templeton. Acta Crystallogr., Sect. B 29, 2748 (1973).CrossrefGoogle Scholar

  • 81

    , A. C. Blackburn, J. C. Gallucci, R. E. Gerkin. Acta Crystallogr., Sect. C 47, 2019 (1991).CrossrefGoogle Scholar

  • 82

    , F. A. Cotton, L. R. Falvello, C. A. Murillo, J. F. Quesada. J. Solid State Chem. 96, 192 (1992).CrossrefGoogle Scholar

  • 83

    , M. A. Araya, F. A. Cotton, L. M. Daniels, L. R. Favello, C. A. Murillo. Inorg. Chem. 32, 4853 (1993).CrossrefGoogle Scholar

  • 84

    , B. N. Figgis, E. S. Kucharski, P. A. Reynolds. Acta Crystallogr., Sect. B 46, 577 (1990).CrossrefGoogle Scholar

  • 85

    , G. Johansson, M. Sandström. Acta Chem. Scand., Ser. A 32a, 109 (1978).CrossrefGoogle Scholar

  • 86

    , A. Molla-Abbassi, L. Eriksson, P. Lindqvist-Reis, J. Mink, I. Persson, M. Sandström, M. Skripkin, A.-S. Ullström. J. Chem. Soc., Dalton Trans. 4357 (2002).CrossrefGoogle Scholar

  • 87

    , L. E. Orgel. J. Chem. Soc. 4186 (1958).CrossrefGoogle Scholar

  • 88

    R. S. Nyholm. J. Chem. Soc., Proc. 273 (1961).Google Scholar

  • 89

    I. B. Bersuker. The Jahn–Teller Effect and Vibronic Interactions in Modern Chemistry, Chaps. 1–5, Plenum, New York (1984).Google Scholar

  • 90

    I. B. Bersuker, V. Z. Polinger. Vibronic Interactions in Molecules and Crystals, Chaps. 3 and 4, Springer-Verlag, Berlin (1989).Google Scholar

  • 91

    , D. Strömberg, M. Sandström, U. Wahlgren. Chem. Phys. Lett. 172, 49 (1990).CrossrefGoogle Scholar

  • 92

    , G. Meyer, P. Nockemann. Z. Anorg. Allg. Chem. 629, 1447 (2003).CrossrefGoogle Scholar

  • 93

    , T. Yamaguchi, G. Johansson, B. Holmberg, M. Maeda, H. Ohtaki. Acta Chem. Scand., Ser A 38a, 437 (1984).CrossrefGoogle Scholar

  • 94

    , M. Maeda, Y. Maegawa, T. Yamaguchi, H. Wakita. Bull. Chem. Soc. Jpn. 52, 2545 (1979).CrossrefGoogle Scholar

  • 95

    , M. Sandström, G. W. Neilson, G. Johansson, T. Yamaguchi. J. Phys. C, Solid State Phys. 18, L1115 (1985).CrossrefGoogle Scholar

  • 96

    , T. Yamaguchi, O. Lindqvist, J. B. Boyce, T. Claesson. Acta Chem. Scand., Ser A 38a, 423 (1984).CrossrefGoogle Scholar

  • 97

    , T. M. Seward, C. M. B. Henderson, J. M. Charnock, B. R. Dobson. Geochim. Cosmochim. Acta 60, 2273 (1996).CrossrefGoogle Scholar

  • 98

    S. Moreno-Diaz. Doctoral thesis, University of Seville, Seville (1998).Google Scholar

  • 99

    , V. Dubois, P. Archirel, A. Boutin. J. Phys. Chem. B 105, 9363 (2001).CrossrefGoogle Scholar

  • 100

    , R. Armunanto, C. F. Schwenk, B. M. Rode. J. Phys. Chem. A 107, 3132 (2003).CrossrefGoogle Scholar

  • 101

    , Ö. Gröning, T. Drakenberg, L. I. Elding. Inorg. Chem. 21, 1820 (1982).CrossrefGoogle Scholar

  • 102

    , A.-V. Mudring, F. Rieger. Inorg. Chem. 44, 6240 (2005) and refs. therein.CrossrefGoogle Scholar

  • 103

    , L. Shimoni-Livny, J. P. Glusker, C. W. Bock. Inorg. Chem. 37, 1853 (1998) and refs. therein.CrossrefGoogle Scholar

  • 104

    , D. L. Reger, T. D. Wright, C. A. Little, J. J. S. Lamba, M. D. Smith. Inorg. Chem. 40, 3810 (2001).CrossrefGoogle Scholar

About the article

Published Online: 2010-08-06

Published in Print: 2010-08-06


Citation Information: Pure and Applied Chemistry, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-09-10-22.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Antonio Gil, Mohammad Javad Amiri, Jahangir Abedi-Koupai, and Saeid Eslamian
Environmental Science and Pollution Research, 2017
[2]
Chengliang Xiao, Zohreh Hassanzadeh Fard, Debajit Sarma, Tze-Bin Song, Chao Xu, and Mercouri G. Kanatzidis
Journal of the American Chemical Society, 2017
[3]
Ammar Al Helal, Adam Soames, Rolf Gubner, Stefan Iglauer, and Ahmed Barifcani
Journal of Colloid and Interface Science, 2017
[4]
Yijue Diao, Mengwei Han, Josue A. Lopez-Berganza, Lauren Valentino, Benito Marinas, and Rosa M. Espinosa-Marzal
Langmuir, 2017
[5]
Tahir Mehmood, K. M. Wu, Aiman Mukhtar, Babar S. Khan, Adnan Saeed, Humaira Latif, Zahida Parveen, and Syeda Ruqaya Kazmi
International Journal of Materials Research, 2017, Volume 108, Number 8, Page 688
[6]
Pedro Mateus, Barbara Wicher, Yann Ferrand, and Ivan Huc
Chem. Commun., 2017, Volume 53, Number 67, Page 9300
[7]
Evgenios Kokkinos, Konstantinos Soukakos, Margaritis Kostoglou, and Manassis Mitrakas
Environmental Science and Pollution Research, 2017
[8]
J. I. Martins, J. J. M. Órfão, and O. S. G. P. Soares
Protection of Metals and Physical Chemistry of Surfaces, 2017, Volume 53, Number 4, Page 618
[9]
P. Vinoth and P. Sankar
Journal of Molecular Graphics and Modelling, 2017, Volume 76, Page 242
[10]
A. Sciortino, A. Madonia, M. Gazzetto, L. Sciortino, E. J. Rohwer, T. Feurer, F. M. Gelardi, M. Cannas, A. Cannizzo, and F. Messina
Nanoscale, 2017, Volume 9, Number 33, Page 11902
[11]
Olga Ershova, Kaarlo Nieminen, and Herbert Sixta
ChemCatChem, 2017, Volume 9, Number 15, Page 3031
[12]
Shengye Wang, Mohammed F. Hamza, Thierry Vincent, Catherine Faur, and Eric Guibal
Journal of Colloid and Interface Science, 2017, Volume 504, Page 780
[13]
M. Arbel Haddad, E. Ofer-Rozovsky, G. Bar-Nes, E.J.C. Borojovich, A. Nikolski, D. Mogiliansky, and A. Katz
Journal of Nuclear Materials, 2017, Volume 493, Page 168
[14]
Mohammad Razaul Karim, Md. Saidul Islam, Nurun Nahar Rabin, Hiroshi Takehira, Kosuke Wakata, Masaaki Nakamura, Ryo Ohtani, Kei Toda, and Shinya Hayami
ChemistrySelect, 2017, Volume 2, Number 15, Page 4248
[15]
Yuji Arai and Jessica T. Dahle
Journal of Agricultural and Food Chemistry, 2017
[16]
Sida Wang, Phil Liebing, Florian Oehler, John W. Gilje, Cristian G. Hrib, and Frank T. Edelmann
Crystal Growth & Design, 2017, Volume 17, Number 6, Page 3402
[17]
Kerui Li, Yuanlong Shao, Shiyi Liu, Qinghong Zhang, Hongzhi Wang, Yaogang Li, and Richard B. Kaner
Small, 2017, Volume 13, Number 19, Page 1700380
[18]
A. Fallahi, Y. Bahramzadeh, S. E. Tabatabaie, and M. Shahinpoor
International Journal of Intelligent Robotics and Applications, 2017, Volume 1, Number 2, Page 143
[19]
Salma Ahmed Alzahrani, Shaeel Ahmed Al-Thabaiti, Wafa Shamsan Al-Arjan, Maqsood Ahmad Malik, and Zaheer Khan
Journal of Molecular Structure, 2017, Volume 1137, Page 495
[20]
A. Benettayeb, E. Guibal, A. Morsli, and R. Kessas
Chemical Engineering Journal, 2017, Volume 316, Page 704
[21]
Rustem R. Amirov, Julia Shayimova, Zarina Nasirova, and Ayrat M. Dimiev
Carbon, 2017, Volume 116, Page 356
[22]
Alma Mejri, Outaf Fliss, and Khaled Alouani
Journal of Electroanalytical Chemistry, 2017, Volume 787, Page 163
[23]
Gujie Qian, Yubiao Li, Jun Li, and Andrea R. Gerson
International Journal of Mineral Processing, 2017, Volume 159, Page 42
[24]
Rama Pulicharla, Krishnamoorthy Hegde, Satinder Kaur Brar, and Rao Y. Surampalli
Environmental Pollution, 2017, Volume 221, Page 1
[25]
Alexander L. Kwiatkowski, Vyacheslav S. Molchanov, Anton S. Orekhov, Alexander L. Vasiliev, and Olga E. Philippova
The Journal of Physical Chemistry B, 2016, Volume 120, Number 49, Page 12547
[26]
Michael T. Huxley, Campbell J. Coghlan, Witold M. Bloch, Alexandre Burgun, Christian J. Doonan, and Christopher J. Sumby
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, Volume 375, Number 2084, Page 20160028
[27]
Chao Ning, Meng Xu, David Chi-Wai Hui, Carol Sze Ki Lin, and Gordon McKay
Chemical Engineering Journal, 2017, Volume 311, Page 37
[29]
Filipe Simões Teodoro, Oscar Fernando Herrera Adarme, Laurent Frédéric Gil, and Leandro Vinícius Alves Gurgel
Journal of Colloid and Interface Science, 2017, Volume 487, Page 266
[30]
Joël Brugger, Weihua Liu, Barbara Etschmann, Yuan Mei, David M. Sherman, and Denis Testemale
Chemical Geology, 2016, Volume 447, Page 219
[31]
Noelia Morales, Elsa Galbis, José M. Martínez, Rafael R. Pappalardo, and Enrique Sánchez Marcos
The Journal of Physical Chemistry Letters, 2016, Volume 7, Number 21, Page 4275
[32]
Miha Purg, Anna Pabis, Florian Baier, Nobuhiko Tokuriki, Colin Jackson, and Shina Caroline Lynn Kamerlin
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, Volume 374, Number 2080, Page 20160150
[33]
Ki Yong Jee, Nowon Kim, and Yong Taek Lee
Journal of Industrial and Engineering Chemistry, 2016, Volume 44, Page 155
[35]
D. M. R. E. A. Dissanayake, P. K. D. Chathuranga, P. I. Perera, M. Vithanage, and M. C. M. Iqbal
Bioremediation Journal, 2016, Volume 20, Number 3, Page 194
[36]
Liva Dzene, Eric Ferrage, Fabien Hubert, Alfred Delville, and Emmanuel Tertre
Applied Clay Science, 2016, Volume 132-133, Page 205
[37]
A. Migdisov, A.E. Williams-Jones, J. Brugger, and F.A. Caporuscio
Chemical Geology, 2016, Volume 439, Page 13
[38]
Karolis Vilcinskas, Jure Zlopasa, Kaspar M. B. Jansen, Fokko M. Mulder, Stephen J. Picken, and Ger J. M. Koper
Macromolecular Materials and Engineering, 2016, Volume 301, Number 9, Page 1049
[39]
Bożena Adrjan, Włodzimierz Makulski, Karol Jackowski, Taye B. Demissie, Kenneth Ruud, Andrej Antušek, and Michał Jaszuński
Phys. Chem. Chem. Phys., 2016, Volume 18, Number 24, Page 16483
[40]
Youngho Eom, Tae Woo Kim, and Byoung Chul Kim
Macromolecular Research, 2016, Volume 24, Number 5, Page 450
[41]
G. Durán-Jiménez, V. Hernández-Montoya, M.A. Montes-Morán, J.R. Rangel-Méndez, and R. Tovar-Gómez
Journal of Molecular Liquids, 2016, Volume 220, Page 855
[42]
Jaewoo Park, Paul Bazylewski, and Giovanni Fanchini
Nanoscale, 2016, Volume 8, Number 18, Page 9563
[43]
Evgeny A. Karpushkin, Mikhail V. Artemov, and Vladimir G. Sergeyev
Mendeleev Communications, 2016, Volume 26, Number 2, Page 117
[44]
Nicolò Campagnol, Tom R. C. Van Assche, Minyuan Li, Linda Stappers, Mircea Dincă, Joeri F. M. Denayer, Koen Binnemans, Dirk E. De Vos, and Jan Fransaer
J. Mater. Chem. A, 2016, Volume 4, Number 10, Page 3914
[45]
Jogi Ganesh Dattatreya Tadimeti and Sujay Chattopadhyay
Desalination, 2016, Volume 385, Page 93
[46]
Jayce J. Cheng, Samuel M. Nicaise, Karl K. Berggren, and Silvija Gradečak
Nano Letters, 2016, Volume 16, Number 1, Page 753
[47]
Gregory N. Smith, Paul Brown, Craig James, Roger Kemp, Asad Muhammad Khan, Tomás S. Plivelic, Sarah E. Rogers, and Julian Eastoe
Journal of Colloid and Interface Science, 2016, Volume 465, Page 316
[48]
Xueyun Han and Yufeng Peng
Optik - International Journal for Light and Electron Optics, 2016, Volume 127, Number 3, Page 1455
[49]
Wei Hua, Dominique Verreault, and Heather C. Allen
ChemPhysChem, 2015, Volume 16, Number 18, Page 3910
[50]
Jian Zhang, Yuguo Xia, Li Zhang, Dairong Chen, and Xiuling Jiao
Phys. Chem. Chem. Phys., 2015, Volume 17, Number 41, Page 27391
[51]
G. La Penna, V. Minicozzi, S. Morante, G. C. Rossi, and F. Stellato
The Journal of Chemical Physics, 2015, Volume 143, Number 12, Page 124508
[52]
Mark A. Farrugia, Beibei Wang, Michael Feig, and Robert P. Hausinger
Biochemistry, 2015, Volume 54, Number 41, Page 6392
[53]
Lili Jiang, Haitao Yu, Xiaomeng Zhou, Xingang Hou, Zongshu Zou, Shujun Li, Chuantong Li, and Xiayan Yao
Desalination and Water Treatment, 2016, Volume 57, Number 39, Page 18446
[54]
Shubin Yang, Naoya Okada, and Masaaki Nagatsu
Journal of Hazardous Materials, 2016, Volume 301, Page 8
[55]
Lynsey Dunbar, Rebecca J. Sowden, Katherine D. Trotter, Michelle K. Taylor, David Smith, Alan R. Kennedy, John Reglinski, and Corinne M. Spickett
BioMetals, 2015, Volume 28, Number 5, Page 903
[57]
Fabian Böhm, Vinay Sharma, Gerhard Schwaab, and Martina Havenith
Phys. Chem. Chem. Phys., 2015, Volume 17, Number 29, Page 19582
[58]
Prabhu Narayanaswamy Venkatesan and Sangeetha Dharmalingam
Journal of Materials Science, 2015, Volume 50, Number 19, Page 6302
[59]
Prabhu Narayanaswamy Venkatesan and Sangeetha Dharmalingam
Journal of Membrane Science, 2015, Volume 492, Page 518
[60]
Xiaoqing Wang, Liangliang Zhang, Jie Yang, Fuling Liu, Fangna Dai, Rongming Wang, and Daofeng Sun
J. Mater. Chem. A, 2015, Volume 3, Number 24, Page 12777
[61]
Masato Yoshioka, Toshiyuki Yokoi, and Takashi Tatsumi
ACS Catalysis, 2015, Volume 5, Number 7, Page 4268
[62]
Maryam Mohammadi, Kerstin Forsberg, Lars Kloo, Joaquin Martinez De La Cruz, and Åke Rasmuson
Hydrometallurgy, 2015, Volume 156, Page 215
[63]
Qianqian Cai, Brett D. Turner, Daichao Sheng, and Scott Sloan
Journal of Contaminant Hydrology, 2015, Volume 177-178, Page 136
[64]
S. A. Ovalle-Serrano, V. S. Carrillo, C. Blanco-Tirado, J. P. Hinestroza, and M. Y. Combariza
Cellulose, 2015, Volume 22, Number 3, Page 1841
[65]
Indraneel S. Zope, Aravind Dasari, and Giovanni Camino
Materials Chemistry and Physics, 2015, Volume 157, Page 69
[66]
Seyed Mostafa Jafari Raad, Reza Azin, and Shahriar Osfouri
Heat and Mass Transfer, 2015, Volume 51, Number 11, Page 1587
[67]
Moni U. Khobragade and Anjali Pal
Journal of Environmental Science and Health, Part A, 2015, Volume 50, Number 4, Page 385
[68]
Patrick Frank, Maurizio Benfatto, Munzarin Qayyam, Britt Hedman, and Keith O. Hodgson
The Journal of Chemical Physics, 2015, Volume 142, Number 8, Page 084310
[70]
Zheng Li, Kai Xiang, Wenting Xing, W. Craig Carter, and Yet-Ming Chiang
Advanced Energy Materials, 2015, Volume 5, Number 5, Page 1401410
[71]
Hironori Takeda, Motoyuki Hattori, Tomohiro Nishizawa, Keitaro Yamashita, Syed T. A. Shah, Martin Caffrey, Andrés D. Maturana, Ryuichiro Ishitani, and Osamu Nureki
Nature Communications, 2014, Volume 5, Page 5374
[72]
Vinay Sharma, Fabian Böhm, Gerhard Schwaab, and Martina Havenith
Phys. Chem. Chem. Phys., 2014, Volume 16, Number 45, Page 25101
[73]
Gegham Galstyan and Ernst-Walter Knapp
Journal of Computational Chemistry, 2015, Volume 36, Number 2, Page 69
[74]
Kevin R. Hinkle, Cynthia J. Jameson, and Sohail Murad
The Journal of Physical Chemistry C, 2014, Volume 118, Number 41, Page 23803
[75]
Babar Shahzad Khan, Tahir Mehmood, Aiman Mukhtar, and Ming Tan
Materials Letters, 2014, Volume 137, Page 13
[76]
Stewart J. Taylor, Mark D. Haw, Jan Sefcik, and Ashleigh J. Fletcher
Langmuir, 2014, Volume 30, Number 34, Page 10231
[77]
Asma Hammami, Amal Rabti, and Noureddine Raouafi
Journal of Electroanalytical Chemistry, 2014, Volume 731, Page 179
[79]
A. Ryzhikov, I. Khay, H. Nouali, T. J. Daou, and J. Patarin
Phys. Chem. Chem. Phys., 2014, Volume 16, Number 33, Page 17893
[80]
Manuela Borchert, Max Wilke, Christian Schmidt, Kristina Kvashnina, and Sandro Jahn
Geochimica et Cosmochimica Acta, 2014, Volume 142, Page 535
[81]
Mahdy M. Elmahdy, Astrid Drechsler, Eva Bittrich, Petra Uhlmann, and Manfred Stamm
Colloid and Polymer Science, 2014, Volume 292, Number 8, Page 1999
[83]
Nicolò Campagnol, Ricardo Romero-Vara, Willem Deleu, Linda Stappers, Koen Binnemans, Dirk E. De Vos, and Jan Fransaer
ChemElectroChem, 2014, Volume 1, Number 7, Page 1182
[84]
Mikołaj Owsianiak, Karin Veltman, Michael Z. Hauschild, A. Jan Hendriks, Zoran J.N. Steinmann, and Mark A.J. Huijbregts
Chemosphere, 2014, Volume 112, Page 487
[85]
Mercedes García Bugarín and Ricardo A. Mosquera
Structural Chemistry, 2014, Volume 25, Number 6, Page 1647
[86]
Diana Yepes, Robert Seidel, Bernd Winter, Jochen Blumberger, and Pablo Jaque
The Journal of Physical Chemistry B, 2014, Volume 118, Number 24, Page 6850
[87]
Shubin Yang, Cho Han, Xiangke Wang, and Masaaki Nagatsu
Journal of Hazardous Materials, 2014, Volume 274, Page 46
[88]
Ida Svanedal, Susanne Boija, Ann Almesåker, Gerd Persson, Fredrik Andersson, Erik Hedenström, Dan Bylund, Magnus Norgren, and Håkan Edlund
Langmuir, 2014, Volume 30, Number 16, Page 4605
[89]
Fernanda Duarte, Paul Bauer, Alexandre Barrozo, Beat Anton Amrein, Miha Purg, Johan Åqvist, and Shina Caroline Lynn Kamerlin
The Journal of Physical Chemistry B, 2014, Volume 118, Number 16, Page 4351
[90]
Seok Min Yoon, Scott C. Warren, and Bartosz A. Grzybowski
Angewandte Chemie International Edition, 2014, Volume 53, Number 17, Page 4437
[91]
Seok Min Yoon, Scott C. Warren, and Bartosz A. Grzybowski
Angewandte Chemie, 2014, Volume 126, Number 17, Page 4526
[92]
Kenneth A. Rubinson
Journal of Solution Chemistry, 2014, Volume 43, Number 3, Page 453
[93]
Sang Jun Kim, Yeob Lee, Dong Ki Lee, Jung Woo Lee, and Jeung Ku Kang
Journal of Materials Chemistry A, 2014, Volume 2, Number 12, Page 4136
[94]
[95]
O. V. Vashchenko, Yu. L. Ermak, and L. N. Lisetski
Biophysics, 2013, Volume 58, Number 4, Page 515
[97]
Holden W. H. Lai, Albert Tianxiang Liu, Bright U. Emenike, William R. Carroll, and John D. Roberts
The Journal of Physical Chemistry A, 2014, Volume 118, Number 11, Page 1965
[98]
Md Munan Shaik, Nicholus Bhattacharjee, Anirban Bhattacharjee, Martin J. Field, and Giuseppe Zanotti
Proteins: Structure, Function, and Bioinformatics, 2014, Volume 82, Number 7, Page 1311
[99]
Muhammad M.R. Bhuiyan, Shawn D. Lin, and Ting C. Hsiao
Catalysis Today, 2014, Volume 226, Page 150
[100]
Sibel Kacmaz, Kadriye Ertekin, Ozlem Oter, Deniz Mercan, Engin Cetinkaya, and Erdal Celik
Journal of Luminescence, 2014, Volume 147, Page 265
[101]
Seyed A. Dastgheib, Jianli Ren, Massoud Rostam-Abadi, and Ramsay Chang
Applied Surface Science, 2014, Volume 290, Page 92
[102]
Juliana Martins de Souza e Silva, Murilo Pastorello, Jörg Kobarg, Mateus Borba Cardoso, and Italo Odone Mazali
ChemPhysChem, 2013, Volume 14, Number 18, Page 4075
[104]
Jian Payandeh, Roland Pfoh, and Emil F. Pai
Biochimica et Biophysica Acta (BBA) - Biomembranes, 2013, Volume 1828, Number 11, Page 2778
[105]
Santiago Botasini, Gonzalo Heijo, and Eduardo Méndez
Analytica Chimica Acta, 2013, Volume 800, Page 1
[106]
Narottam Sutradhar, Sandip Kumar Pahari, Muthirulandi Jayachandran, A. Manuel Stephan, J. R. Nair, Balasubramanian Subramanian, Hari C. Bajaj, Haresh M. Mody, and Asit Baran Panda
Journal of Materials Chemistry A, 2013, Volume 1, Number 32, Page 9122
[107]
Lutfullah, Mohd Rashid, Uzma Haseen, and Nafisur Rahman
Journal of Industrial and Engineering Chemistry, 2014, Volume 20, Number 3, Page 809
[108]
Vinay Sharma, Fabian Böhm, Michael Seitz, Gerhard Schwaab, and Martina Havenith
Physical Chemistry Chemical Physics, 2013, Volume 15, Number 21, Page 8383
[109]
Li-Na Jia, Lei Hou, Lei Wei, Xiao-Jing Jing, Bo Liu, Yao-Yu Wang, and Qi-Zhen Shi
Crystal Growth & Design, 2013, Volume 13, Number 4, Page 1570
[110]
Amanda Beck, Veena Vijayanathan, Thresia Thomas, and T.J. Thomas
Biochimie, 2013, Volume 95, Number 6, Page 1310
[111]
V. Hernández-Montoya, M.A. Pérez-Cruz, D.I. Mendoza-Castillo, M.R. Moreno-Virgen, and A. Bonilla-Petriciolet
Journal of Environmental Management, 2013, Volume 116, Page 213
[112]
Simone Furini and Carmen Domene
Biophysical Journal, 2012, Volume 103, Number 10, Page 2106
[113]
A. Guskov, N. Nordin, A. Reynaud, H. Engman, A.-K. Lundback, A. J. O. Jong, T. Cornvik, T. Phua, and S. Eshaghi
Proceedings of the National Academy of Sciences, 2012, Volume 109, Number 45, Page 18459
[114]
[115]
Susana Gómez-Salces, Fernando Aguado, Rafael Valiente, and Fernando Rodríguez
Angewandte Chemie International Edition, 2012, Volume 51, Number 37, Page 9335
[116]
Susana Gómez-Salces, Fernando Aguado, Rafael Valiente, and Fernando Rodríguez
Angewandte Chemie, 2012, Volume 124, Number 37, Page 9469
[117]
David A. Johnson and Peter G. Nelson
Inorganic Chemistry, 2012, Volume 51, Number 11, Page 6116
[118]
Peter De Vreese, Neil R. Brooks, Kristof Van Hecke, Luc Van Meervelt, Edward Matthijs, Koen Binnemans, and Rik Van Deun
Inorganic Chemistry, 2012, Volume 51, Number 9, Page 4972
[119]
Keyan Li, Min Li, and Dongfeng Xue
The Journal of Physical Chemistry A, 2012, Volume 116, Number 16, Page 4192
[120]
Daniel T. Bowron, Elizabeth C. Beret, Eloisa Martin-Zamora, Alan K. Soper, and Enrique Sánchez Marcos
Journal of the American Chemical Society, 2012, Volume 134, Number 2, Page 962
[121]
Johan Mähler and Ingmar Persson
Inorganic Chemistry, 2012, Volume 51, Number 1, Page 425
[122]
Matteo Farnesi Camellone and Dominik Marx
Phys. Chem. Chem. Phys., 2012, Volume 14, Number 2, Page 937
[123]
Simone Furini and Carmen Domene
Journal of Molecular Biology, 2011, Volume 409, Number 5, Page 867

Comments (0)

Please log in or register to comment.
Log in