Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

See all formats and pricing
More options …
Volume 82, Issue 11


Non-enzymatic glucose detection using nitrogen-doped diamond-like carbon electrodes modified with gold nanoclusters

Aiping Liu
  • Corresponding author
  • Department of Physics, Center for Optoelectronics Materials and Devices, Zhejiang Sci-Tech University, Xiasha College Park, Hangzhou 310018, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Erjia Liu
  • Corresponding author
  • School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Guocheng Yang
  • Corresponding author
  • School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nay Win Khun
  • Corresponding author
  • School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Wenguang Ma
  • Corresponding author
  • School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-08-01 | DOI: https://doi.org/10.1351/PAC-CON-09-11-11

Highly sensitive electrochemical electrodes for glucose detection were developed by using Au nanoclusters (NCs) to modify nitrogen-doped diamond-like carbon thin films (DLC:N/Au). The DLC:N/Au electrodes were prepared with a filtered cathodic vacuum arc process followed by electrodeposition and characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, and scanning electron microscopy. The size of the Au NCs covered by Au oxide ranged between 10 and 70 nm with a density of 108–109 clusters per cm2. Glucose oxidation at the DLC:N/Au electrodes started from about –0.5 V due to the high catalytic activities of the Au NCs in NaOH solutions, and the catalytic ability of the electrodes depended on the amount of Au NCs deposited on the electrode surfaces. A linear detection range of glucose with the DLC:N/Au electrodes was identified from about 0.25 to 30 mM (covering blood glucose levels in diabetic patients) with a detection limit of 60 μM. The experimental results showed that the non-enzymatic glucose sensors based on the DLC:N/Au electrodes had high sensitivity and good reproducibility and stability.

Keywords: catalytic activity; glucose detection; gold nanoclusters; nitrogen-doped diamond-like carbon thin film


International Symposium on Novel Materials and Their Synthesis (NMS-V) and the 19th International Symposium on Fine Chemistry and Functional Polymers (FCFP-XIX), Novel Materials and their Synthesis, NMS, Novel Materials and their Synthesis, 5th, Shanghai, China, 2009-10-18–2009-10-22


  • 1

    K. Borch-Johnsen, A. Neil, B. Balkau, S. Larsen, K. Borch-Johnsen, A. Nissinen, J. Pekkanen, J. Tuomilehto, S. Keinanen-Kiukaanniemi, L. Hiltunen, S. L. Kivela, J. Tuomilehto, P. Jousilahti, J. Lindstrom, M. Pyorala, K. Pyorala, B. Balkau, E. Eschwege, G. Gallus, M. P. Garancini, A. Schranz, R. J. Heine, J. M. Dekker, E. Feskens, H. Lithell, B. Zethelius, M. Peltonen, N. Unwin, N. Ahmad, K. G. M. M. Alberti, M. M. Alberti, K. Borch-Johnsen, J. Eriksson, Q. Qiao, J. Tuomilehto, Q. Qiao, B. Balkau, J. Tuomilehto, Q. Qiao, K. Borch-Johnsen, B. Balkau. Lancet354, 617 (1999).Google Scholar

  • 2

    J. W. Lee, J. D. Helmann. Diabetes Care23, 208 (2000).CrossrefGoogle Scholar

  • 3

    , L. A. Larew, D. C. Johnson. J. Electroanal. Chem.262, 167 (1989).CrossrefGoogle Scholar

  • 4

    , H. W. Lei, B. L. Wu, C. S. Cha, H. Kita. J. Electroanal. Chem.382, 103 (1995).CrossrefGoogle Scholar

  • 5

    , P. Parpot, S. G. Pires, A. P. Bettencourt. J. Electroanal. Chem.566, 401 (2004).CrossrefGoogle Scholar

  • 6

    , S. Ben Aoun, Z. Dursun, T. Koga, G. S. Bang, T. Sotomura, I. Taniguchi. J. Electroanal. Chem.567, 175 (2004).CrossrefGoogle Scholar

  • 7

    S. Gilman. In Electroanalytical Chemistry, A. J. Bard (Ed.), pp. 111–192, Marcel Dekker, New York (1967).Google Scholar

  • 8

    , R. G. Compton, J. S. Foord, F. Marken. Electroanalysis15, 1349 (2003).CrossrefGoogle Scholar

  • 9

    , R. L. McCreery. Chem. Rev.108, 2646 (2008).CrossrefGoogle Scholar

  • 10

    , T. Tatsuma, H. Mori, A. Fujishima. Anal. Chem.72, 2919 (2000).CrossrefGoogle Scholar

  • 11

    , R. Maalouf, H. Chebib, Y. Saikali, O. Vittori, M. Sigaud, F. Garrelie, C. Donnet, N. Jaffrezic-Renault. Talanta72, 310 (2007).CrossrefGoogle Scholar

  • 12

    , H. Cachet, C. Deslouis, M. Chouiki, B. Saidani, N. M. J. Conway, C. Godet. J. Electrochem. Soc.149, E233 (2002).CrossrefGoogle Scholar

  • 13

    , J. Robertson. Mater. Sci. Eng. R37, 129 (2002).CrossrefGoogle Scholar

  • 14

    , Z. E. Zhang, H. Y. Liu, J. Q. Deng. Anal. Chem.68, 1632 (1996).CrossrefGoogle Scholar

  • 15

    , J. Wang, J. A. Carlisle. Diamond Relat. Mater.15, 279 (2006).CrossrefGoogle Scholar

  • 16

    , Y. Liu, M. K. Wang, F. Zhao, Z. A. Xu, S. J. Dong. Biosens. Bioelectron.21, 984 (2005).CrossrefGoogle Scholar

  • 17

    , Y. H. Lin, F. Lu, Y. Tu, Z. F. Ren. Nano. Lett.4, 191 (2004).CrossrefGoogle Scholar

  • 18

    , S. Q. Liu, H. X. Ju. Biosens. Bioelectron.19, 177 (2003).CrossrefGoogle Scholar

  • 19

    , S. Park, H. Boo, T. D. Chung. Anal. Chim. Acta556, 46 (2006).CrossrefGoogle Scholar

  • 20

    , J. S. Ye, Y. Wen, W. D. Zhang, L. M. Gan, G. Q. Xu, F. S. Sheu. Electrochem. Commun.6, 66 (2004).CrossrefGoogle Scholar

  • 21

    , A. Lagrini, C. Deslouis, H. Cachet, M. Benlahsen, S. Charvet. Electrochem. Commun.6, 245 (2004).CrossrefGoogle Scholar

  • 22

    , K. Yoo, B. Miller, X. Shi, R. Kalish. J. Electrochem. Soc.148, C95 (2001).CrossrefGoogle Scholar

  • 23

    , A. P. Liu, J. Q. Zhu, J. C. Han, H. P. Wu, W. Gao. Electroanalysis19, 1773 (2007).CrossrefGoogle Scholar

  • 24

    , G. C. Yang, E. J. Liu, N. W. Khun, S. P. Jiang. J. Electroanal. Chem.627, 51 (2009).CrossrefGoogle Scholar

  • 25

    , M. C. Daniel, D. Astruc. Chem. Rev.104, 293 (2004).CrossrefGoogle Scholar

  • 26

    , G. J. Hutchings. Catal. Today100, 55 (2005).CrossrefGoogle Scholar

  • 27

    , B. Hvolbæk, T. V. W. Janssens, B. S. Clausen, H. Falsig, C. H. Christensen, J. K. Nørskov. Nano Today2, 14 (2007).CrossrefGoogle Scholar

  • 28

    , T. Watanabe, T. A. Ivandini, Y. Makide, A. Fujishima, Y. Einaga. Anal. Chem.78, 7857 (2006).CrossrefGoogle Scholar

  • 29

    , M. L. Mena, P. Yanez-Sedeno, J. M. Pingarron. Anal. Biochem.336, 20 (2005).CrossrefGoogle Scholar

  • 30

    , S. Hrapovic, Y. L. Liu, K. B. Male, J. H. T. Luong. Anal. Chem.76, 1083 (2004).CrossrefGoogle Scholar

  • 31

    , K. B. Male, S. Hrapovic, Y. L. Liu, D. S. Wang, J. H. T. Luong. Anal. Chim. Acta516, 35 (2004).CrossrefGoogle Scholar

  • 32

    , A. Salimi, E. Sharifi, A. Noorbakhsh, S. Soltanian. Biosens. Bioelectron.22, 3146 (2007).CrossrefGoogle Scholar

  • 33

    , M. Benlahsen, H. Cachet, S. Charvet, C. Debiemme-Chouvy, C. Deslouis, A. Lagrini, V. Vivier. Electrochem. Commun.7, 496 (2005).CrossrefGoogle Scholar

  • 34

    , G. R. Salazar-Banda, L. S. Andrade, P. A. P. Nascente, P. S. Pizani, R. C. Rocha, L. A. Avaca. Electrochim. Acta51, 4612 (2006).CrossrefGoogle Scholar

  • 35

    , Z. Wang, C. B. Wang, Q. Wang, J. Y. Zhang. J. Appl. Phys.104, 073306 (2008).CrossrefGoogle Scholar

  • 36

    , J. J. Li, W. T. Zheng, Z. S. Jin, T. X. Gai, G. R. Gu, H. J. Bian, C. Q. Hu. Vacuum72, 233 (2004).CrossrefGoogle Scholar

  • 37

    , R. McCann, S. S. Roy, P. Papakonstantinou, M. F. Bain, H. S. Gamble, J. A. McLaughlin. Thin Solid Films482, 34 (2005).CrossrefGoogle Scholar

  • 38

    , H. G. Boyen, A. Ethirajan, G. Kastle, F. Weigl, P. Ziemann, G. Schmid, M. G. Garnier, M. Buttner, P. Oelhafen. Phys. Rev. Lett.94, 016804 (2005).CrossrefGoogle Scholar

  • 39

    , J. P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, J. H. T. Luong. J. Phys. Chem. B108, 16864 (2004).CrossrefGoogle Scholar

  • 40

    , A. C. Ferrari, J. Robertson. Phys. Rev. B61, 14095 (2000).CrossrefGoogle Scholar

  • 41

    , E. M. Belgsir, E. Bouhier, H. Essis Yei, K. B. Kokoh, B. Beden, H. Huser, J. M. Leger, C. Lamy. Electrochim. Acta36, 1157 (1991).CrossrefGoogle Scholar

  • 42

    , M. Tominaga, T. Shimazoe, M. Nagashima, I. Taniguchi. Electrochem. Commun.7, 189 (2005).CrossrefGoogle Scholar

  • 43

    , M. B. Jensen, D. C. Johnson. Anal. Chem.69, 1776 (1997).CrossrefGoogle Scholar

  • 44

    , P. Ocon, C. Alonso, R. Celdran, J. Gonzalez-Velasco. J. Electroanal. Chem.206, 179 (1986).CrossrefGoogle Scholar

  • 45

    , H. D. Hutton, N. L. Pocard, D. C. Alsmeyer, O. J. A. Schueller, R. J. Spontak, M. E. Huston, W. H. Huang, R. L. McCreery, T. X. Neenan, M. R. Callstrom. Chem. Mater.5, 1727 (1993).CrossrefGoogle Scholar

  • 46

    , J. B. Jia, B. Q. Wang, A. G. Wu, G. J. Cheng, Z. Li, S. J. Dong. Anal. Chem.74, 2217 (2002).CrossrefGoogle Scholar

About the article

Published Online: 2010-08-01

Published in Print: 2010-08-01

Citation Information: Pure and Applied Chemistry, Volume 82, Issue 11, Pages 2217–2229, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-09-11-11.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Abdel-Nasser Kawde, Md. Abdul Aziz, Manal El-Zohri, Nadeem Baig, and Nurudeen Odewunmi
Electroanalysis, 2017, Volume 29, Number 5, Page 1214
Pui Mun Lee, Hai Woon Ng, Ju Dy Lim, Nay Win Khun, Zhong Chen, and Erjia Liu
Electroanalysis, 2016, Volume 28, Number 9, Page 2037
H. Heli and O. Amirizadeh
Materials Science and Engineering: C, 2016, Volume 63, Page 150
Ai-Ping Liu, Min Liu, Jian-Can Yu, Guo-Dong Qian, and Wei-Hua Tang
Chinese Physics B, 2015, Volume 24, Number 5, Page 056804
Aiping Zeng, Victor F. Neto, Jose J. Gracio, and Qi Hua Fan
Diamond and Related Materials, 2014, Volume 43, Page 12
Aiping Liu, Tao Xu, Jian Tang, Huaping Wu, Tingyu Zhao, and Weihua Tang
Electrochimica Acta, 2014, Volume 119, Page 43
Aiping Liu, Ming Yuan, Ming Zhao, Congda Lu, Tingyu Zhao, Peigang Li, and Weihua Tang
Journal of Alloys and Compounds, 2014, Volume 586, Page 99
Peng Si, Youju Huang, Taihong Wang, and Jianmin Ma
RSC Advances, 2013, Volume 3, Number 11, Page 3487
Aiping Liu, Tao Xu, Qinghua Ren, Ming Yuan, Wenjun Dong, and Weihua Tang
Electrochemistry Communications, 2012, Volume 25, Page 74
Dianping Tang, Qunfang Li, Juan Tang, Biling Su, and Guonan Chen
Analytica Chimica Acta, 2011, Volume 686, Number 1-2, Page 144
Yizhong Lu and Wei Chen
Chemical Society Reviews, 2012, Volume 41, Number 9, Page 3594
Aiping Liu, Qinghua Ren, Tao Xu, Ming Yuan, and Weihua Tang
Sensors and Actuators B: Chemical, 2012, Volume 162, Number 1, Page 135

Comments (0)

Please log in or register to comment.
Log in