Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 82, Issue 11

Issues

Excitation energy transfer in conjugated polymer/silicon nanocrystal-based bulk heterojunctions

Vladimir Švrček
  • Corresponding author
  • Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-08-06 | DOI: https://doi.org/10.1351/PAC-CON-09-12-01

An excitation energy transfer in a bulk heterojunction based on freestanding silicon nanocrystals (Si-NCs) and conjugated polymers {poly(3-hexylthiophene) (P3HT), poly[2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV)} is demonstrated. The electrochemical etching process is employed for fabrication of freestanding and polymer soluble Si-NCs. Formation of a bulk heterojunction is confirmed by a difference in a work function of both polymers and an ionization potential of the NCs. An annealing step significantly influences the polymer chain conformation and electronic interaction between the polymer and the NC, which improves the exciton energy migration. The presence of the Si-NCs in polymers suppresses the relative intensity of vibronic peaks, resulting in a red-shift of the blend photoluminescence (PL) spectra. This phenomenon is attributed to a temperature-dependent migration process of singlet exciton and Dexter excitation energy transfer from the polymer to the NC. Compared to MEH-PPV polymer, a lamella-type stacking structure of the P3HT and an abridged PL spectra overlap with NCs decreases an excitation energy transfer rate. At the same time, an improvement in photocurrent generation is recorded when Si-NCs are embedded in P3HT polymer. After Dexter-like excitonic energy transfer, the PL emission of both blends is controlled through a quantum confinement effect and electron-hole recombination in Si-NCs.

Keywords: conjugated polymers; excitation energy transfer; photoconductivity; photo-luminescence; silicon nanocrystals

Conference

International Symposium on Novel Materials and Their Synthesis (NMS-V) and the 19th International Symposium on Fine Chemistry and Functional Polymers (FCFP-XIX), Novel Materials and their Synthesis, NMS, Novel Materials and their Synthesis, 5th, Shanghai, China, 2009-10-18–2009-10-22

References

  • 1

    C. J. Brabec, V. Dyakonov. In Organic Photovoltaics: Concepts and Realization, C. J. Brabec, V. Dykonov, J. Parisi, N. S. Sariciftci (Eds.), Springer-Verlag, Berlin (2003).Google Scholar

  • 2

    , H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw. Nature401, 685 (1999).CrossrefGoogle Scholar

  • 3

    J. Y. Seong, K. S. Chung, S. K. Kwak, Y. H. Kim, D. G. Moon, J. I. Han, W. K. Kim. J. Korean Phys. Soc.45, 5914 (2004).Google Scholar

  • 4

    , W. R. Salaneck, O. Inganas, B. Themans, J. O. Nilsson, B. Siogren, J.-E. Osterholm, J.-L. Bredas, S. Svensson. J. Chem. Phys.89, 4613 (1988).CrossrefGoogle Scholar

  • 5

    Y. Shao, G. Yuan, P. Reche, M. Lecerc. Polymer36, 2211 (1995).Google Scholar

  • 6

    , F. Padinger, R. S. Rittber, N. S. Sariciftci. Adv. Funct. Mater.13, 85 (2003).CrossrefGoogle Scholar

  • 7

    , D. R. Baigent, R. N. Marks, N. C. Greenham, R. H. Friend, S. C. Moratti, A. B. Holmes. Appl. Phys. Lett.65, 2636 (1994).CrossrefGoogle Scholar

  • 8

    , V. Bulovic, P. Tian, P. E. Burrows, M. R. Gokhale, S. R. Forrest, M. E. Thompson. Appl. Phys. Lett.70, 2954 (1997).CrossrefGoogle Scholar

  • 9

    , D. Y. Kim, S. K. Lee, J. L. Kim, H. Lee, H. N. Cho, S. I. Hong, C. Y. Kim. Synth. Met.121, 1707 (2001).CrossrefGoogle Scholar

  • 10

    , X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen. Nano Lett.5, 579 (2005).CrossrefGoogle Scholar

  • 11

    , F. Padinger, R. S. Rittberger, N. S. Sariciftci. Adv. Funct. Mater.13, 85 (2003).CrossrefGoogle Scholar

  • 12

    , P. Peumans, S. R. Forrest. Appl. Phys. Lett.79, 126 (2001).CrossrefGoogle Scholar

  • 13

    , M. M. Wienk, J. M. Kroon, W. J. H. Verhees, J. Knol, J. C. Hummelen, P. A. van Hal, R. A. J. Janssen. Angew. Chem., Int. Ed.42, 3371 (2003).CrossrefGoogle Scholar

  • 14

    C. J. Brabec. Sol. Energy Mater. Sol. Cells83, 273 (2004).CrossrefGoogle Scholar

  • 15

    , V. L. Colvin, M. C. Schlamp, A. P. Alivisatos. Nature370, 354 (1994).CrossrefGoogle Scholar

  • 16

    , N. Tessler, V. Medvedev, M. Kazes, S. Kan, U. Banin. Science295, 1506 (2002).CrossrefGoogle Scholar

  • 17

    , L. Bakueva, S. Musikhin, M. A. Hines, T. W. F. Chang, M. Tzolov, G. D. Scholes, E. H. Sargent. Appl. Phys. Lett.82, 2895 (2003).CrossrefGoogle Scholar

  • 18

    , A. A. R. Neves, A. Camposeo, R. Cingolani, D. Pisignano. Adv. Funct. Mater.18, 751 (2008).CrossrefGoogle Scholar

  • 19

    , C. J. Brabec, N. S. Sariciftci, J. C. Hummelen. Adv. Funct. Mater.11, 15 (2001).CrossrefGoogle Scholar

  • 20

    , S. A. Choulis, J. Nelson, Y. Kim, D. Poplavskyy, T. Kreouzis, J. R. Durrant, D. D. C. Bradley. Appl. Phys. Lett83, 3812 (2003).CrossrefGoogle Scholar

  • 21

    , F. W. Wise. Acc. Chem. Res33, 773 (2003).CrossrefGoogle Scholar

  • 22

    K. Sill, T. J. Emrick. J. Am. Chem. Soc.126, 11322 (2004).Google Scholar

  • 23

    , A. J. Mozer, P. Denk, M. C. Scharber, H. Neugebauer, N. S. Sariciftci. J. Phys. Chem. B108, 5235 (2004).CrossrefGoogle Scholar

  • 24

    , C. Winder, N. S. Sariciftci. J. Mater. Chem.14, 1077 (2004).CrossrefGoogle Scholar

  • 25

    , T. Hasobe, Y. Kashiwagi, M. A. Absalom, J. Sly, K. Hosomizu, M. J. Crossley, H. Imahori, P. V. Kamat, S. Fukuzumi. Adv. Mater.16, 975 (2004).CrossrefGoogle Scholar

  • 26

    , M. A. Hines, G. D. Scholes. Adv. Mater.15, 1844 (2003).CrossrefGoogle Scholar

  • 27

    , J. Brabec, N. S. Sariciftci, J. C. Hummelen. Adv. Funct. Mater.11, 15 (2004).CrossrefGoogle Scholar

  • 28

    , V. Švrček, H. Fujiwara, M. Kondo. Appl. Phys. Lett.92, 143301 (2008).CrossrefGoogle Scholar

  • 29

    , L. Yi, R. Scholz, M. Zacharias. J. Photoluminescence122-123, 750 (2007).CrossrefGoogle Scholar

  • 30

    , M. C. Beard, K. P. Knutsen, P. Yu, J. M. Luther, Q. Song, W. K. Metzger, R. J. Ellingson, A. J. Nozik. Nano Lett.7, 2506 (2007).CrossrefGoogle Scholar

  • 31

    , L. Mangolini, D. Jurbergs, E. Rogojina, U. Kortshagen. J. Photoluminescence121, 327 (2006).CrossrefGoogle Scholar

  • 32

    , V. Švrček, A. Slaoui, J.-C. Muller. J. Appl. Phys.95, 3158 (2004).CrossrefGoogle Scholar

  • 33

    , J. Valenta, A. Fucikova, F. Vacha, F. Adamec, J. Humpolickova, M. Hof, I. Pelant, K. Kusová, K. Dohnalova, J. Linnros. Adv. Funct. Mater.18, 2666 (2008).CrossrefGoogle Scholar

  • 34

    , Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, H. Mimura. Phys. Rev. B48, 2827 (1993).CrossrefGoogle Scholar

  • 35

    G. Amato, M. Rosenbauer. Structural and Optical Properties of Porous Silicon Nanostructures, G. Amato, C. Delerue, H.-J. von Bardeleben (Eds.), p. 3, Gordon and Breach, London (1997).Google Scholar

  • 36

    P. M. Fauchet. Light Emission in Silicon: From Physics to Devices, Semiconductors and Semimetals, Vol. 49, D. J. Lockwood (Ed.), Chap. 6, p. 205, Academic Press, San Diego (1998).Google Scholar

  • 37

    , D. Kovalev, H. Heckler, G. Polisski, F. Koch. Phys. Status Solidi A215, 871 (1999).CrossrefGoogle Scholar

  • 38

    , D. Kovalev, H. Heckler, M. Ben-Chorin, G. Polisski, M. Schwartzkopff, F. Koch. Phys. Rev. Lett.81 2803 (1998).CrossrefGoogle Scholar

  • 39

    , M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, C. Delerue. Phys. Rev. Lett.82, 197 (1999).CrossrefGoogle Scholar

  • 40

    A. G. Cullis, L. T. Canham, P. D. J. Calcott. Phys. Rev. Lett.82, 909 (1997).Google Scholar

  • 41

    , G. Belomoin, J. Therrien, M. Nayfeh. Appl. Phys. Lett.77, 779 (2000).CrossrefGoogle Scholar

  • 42

    , S. Komuro, T. Kato, T. Morikawa, P. O’Keeffe, Y. Aoyagi. J. Appl. Phys.80, 1749 (1996).CrossrefGoogle Scholar

  • 43

    , J. D. Holmes, K. J. Ziegler, R. Ch. Doty, L. E. Pell, K. P. Johnston, B. A. Korgel. J. Am. Chem. Soc.123, 3743 (2001).CrossrefGoogle Scholar

  • 44

    , Y. Shi, J. Lui, Y. Yang. J. Appl. Phys.87, 4254 (2000).CrossrefGoogle Scholar

  • 45

    S. Natarajan, S. H. Kim. Chem. Commun.729, 15 (2006).CrossrefGoogle Scholar

  • 46

    , H. Becker, S. E. Burns, R. H. Friend. Phys. Rev. B56, 1893 (1997).CrossrefGoogle Scholar

  • 47

    , R. Kersting, U. Lemmer, R. F. Marht, K. Leo, H. Kurz, H. Bassler, E. O. Gobel. Phys. Rev. Lett.70, 3820 (1993).CrossrefGoogle Scholar

  • 48

    , A. Zen, J. Pflaum, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, J. P. Rabe, U. Scherf, D. Neher. Adv. Funct. Mater.14, 757 (2004).CrossrefGoogle Scholar

  • 49

    , Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook, J. R. Durrant. Appl. Phys. Lett.86, 63502 (2005).CrossrefGoogle Scholar

  • 50

    , N. Greenham, X. Peng, A. Alivisatos. Phys. Rev. B54, 17628 (1996).CrossrefGoogle Scholar

  • 51

    , S. Guha, G. Hendershot, D. Peebles, P. Steiner, F. Kolowski, W. Lang. Appl. Phys. Lett.64, 613 (1994).CrossrefGoogle Scholar

  • 52

    , M. M. Mandoc, W. Veurman, J. Sweelssen, M. M. Koetse, P. W. M. Blom. Appl. Phys. Lett.91, 073518 (2007).CrossrefGoogle Scholar

  • 53

    , H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw. Nature401, 685 (1999).CrossrefGoogle Scholar

  • 54

    , C. Yin, T. Kietzke, D. Neher, H.-H. Horhold. Appl. Phys. Lett.90, 092117 (2007).CrossrefGoogle Scholar

  • 55

    , Y. Kim, S. Cook, S. Tuladhar, S. Choulis, J. Nelson, J. Durrant, D. Bradley, M. Giles, I. McCulloch, C. Ha, M. Ree. Nat. Mater.5, 197 (2006).CrossrefGoogle Scholar

  • 56

    , P. A. C. Quist, T. J. Savenije, M. M. Koetse, S. C. Veenstra, J. M. Kroon, L. D. A. Siebbeles. Adv. Funct. Mater.15, 469 (2005).CrossrefGoogle Scholar

  • 57

    , P. J. Brown, H. Sirringhaus, M. Harrison, M. Shkunov, R. H. Friend. Phys. Rev. B63, 125204 (2001).CrossrefGoogle Scholar

  • 58

    , X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, R. A. J. Janssen. Nano Lett.5, 579 (2005).CrossrefGoogle Scholar

  • 59

    , K. Pichler, D. A. Halliday, D. D. C. Bradley, P. L. Burn, R. H. Friend, A. B. Holmes. J. Phys.: Condens. Matter5, 7155 (1993).CrossrefGoogle Scholar

  • 60

    , J. Yu, M. Hayashi, S. H. Lin, K. K. Liang, J. H. Hsu, W. S. Fann, C. Chao, K. Chung, S. Chen. Synth. Met.82, 159 (1996).CrossrefGoogle Scholar

  • 61

    , M. L. Brongersma, A. Polman, K. S. Min, E. Boer, T. Tambo, H. A. Atwater. Appl. Phys. Lett.72, 2577 (1998).CrossrefGoogle Scholar

  • 62

    V.Švrček, H. Fujiwara, M. Kondo. Sol. Energy Mater. Sol. Cells93, 774 (2009).CrossrefGoogle Scholar

  • 63

    , D. S. Ginger, N. C. Greenham. Synth. Met.124, 117 (2001).CrossrefGoogle Scholar

  • 64

    Th. Förster. Ann. Phys. (N.Y.)2, 55 (1948).Google Scholar

  • 65

    D. L. Andrews, A. A. Demidov. Resonance Energy Transfer, John Wiley, Chichester (1999).Google Scholar

  • 66

    , T. Förster. Discuss. Farraday Soc.27, 7 (1959).CrossrefGoogle Scholar

  • 67

    , T. W. F. Chang, S. Musikhin, L. Bakueva, L. Levina, M. A. Hines, P. W. Cyr, E. H. Sargent. Appl. Phys. Lett.84, 4295 (2004).CrossrefGoogle Scholar

  • 68

    , J. H. Warner, A. A. R. Watt, E. Thomsen, N. Heckenberg, P. Meredith, H. Rubinsztein-Dunlop. J. Phys. Chem. B109, 9001 (2005).CrossrefGoogle Scholar

  • 69

    , D. M. Basko, V. M. Agranovich, F. Bassani, G. C. La Rocca. Eur. Phys. J. B8, 353 (1999).CrossrefGoogle Scholar

  • 70

    , D. L. Dexter. J. Chem. Phys.21, 836 (1953).CrossrefGoogle Scholar

  • 71

    , L. Nayak, M. K. Raval, B. Biswal, U. C. Biswal. Photochem. Photobiol. Sci.1, 629 (2002).CrossrefGoogle Scholar

  • 72

    , A. Monguzzi, R. Tubino, F. Meinardi. Phys. Rev. B77, 155122 (2008).CrossrefGoogle Scholar

  • 73

    , A. D. Andreev, A. A. Lipovskii. Phys. Rev. B59, 15402 (1999).CrossrefGoogle Scholar

  • 74

    , Y. Kang, F. W. Wise. J. Opt. Soc. Am. B14, 1632 (1997).CrossrefGoogle Scholar

  • 75

    V. M. Agranovich, M. D. Galanin. Electronic Excitation Energy Transfer in Condensed Matter, North Holland, Amsterdam (1982).Google Scholar

  • 76

    , M. Achermann, M. A. Petruska, S. Kos, D. L. Smith, D. D. Koleske. Nature429, 642 (2004).CrossrefGoogle Scholar

  • 77

    , C. R. Kagan, C. B. Murray, M. Nirmal, M. G. Bawendi. Phys. Rev. Lett.76, 1517 (1996).CrossrefGoogle Scholar

  • 78

    , T. Franzl, D. S. Koktysh, T. A. Klar, A. L. Rogach, J. Feldmann. Appl. Phys. Lett.84, 2904 (2004).CrossrefGoogle Scholar

About the article

Published Online: 2010-08-06

Published in Print: 2010-08-06


Citation Information: Pure and Applied Chemistry, Volume 82, Issue 11, Pages 2121–2135, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-09-12-01.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Dongzhi Chen, Wei Sun, Chenxi Qian, Annabelle P. Y. Wong, Laura M. Reyes, and Geoffrey A. Ozin
Advanced Optical Materials, 2017, Volume 5, Number 10, Page 1700237
[2]
Davide Mariotti, Somak Mitra, and Vladimir Švrček
Nanoscale, 2013, Volume 5, Number 4, Page 1385
[3]
Tao Song, Shuit-Tong Lee, and Baoquan Sun
Journal of Materials Chemistry, 2012, Volume 22, Number 10, Page 4216

Comments (0)

Please log in or register to comment.
Log in