Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 82, Issue 11

Issues

Inorganically filled carbon nanotubes: Synthesis and properties

Ujjal K. Gautam
  • Corresponding author
  • International Center for Young Scientists, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yoshio Bando
  • Corresponding author
  • World Premier International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Pedro M. F. J. Costa
  • Corresponding author
  • CICECO, Department of Ceramic and Glass, University of Aveiro, 3810-193 Aveiro, Portugal
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiaosheng Fang
  • Corresponding author
  • International Center for Young Scientists, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Benjamin Dierre
  • Corresponding author
  • Advanced Electronic Materials Center, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Takashi Sekiguchi
  • Corresponding author
  • Advanced Electronic Materials Center, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Dmitri Golberg
  • Corresponding author
  • World Premier International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-08-06 | DOI: https://doi.org/10.1351/PAC-CON-09-12-08

Since the discovery of carbon nanotubes (CNTs) in 1991, widespread research has been carried out to understand their useful physical and electronic properties and also to explore their use in devices. CNTs have many unique properties such as tunable electrical resistance, mechanical robustness, and high thermal conductivity, which when combined with other inorganic materials such as phosphors or superconductors could lead to hetero-structures with diverse functionality. We have been able to obtain mass production of such materials wherein CNTs form core-shell heterostructures with metals, semiconductors, insulators, and even metal-semiconductor heterojunctions. The emerging strategy employs a high-temperature chemical vapor deposition (CVD) technique and high heating rates. Interestingly, due to their high temperature stability, CNTs can act as a nanoreactor for production of exotic materials inside it. In this article, we take ZnS-filled CNTs as an example to explain our synthesis strategy. We explore the optical behavior of these complex materials, analyzing both their luminescence and degradation upon exposure to an electron beam. In addition, the mechanical response of filled CNTs has been evaluated individually inside a transmission electron microscope fitted with an atomic force microscopy–transmission electron microscopy (AFM–TEM) sample holder. Many applications can be envisioned for these nanostructures ranging from nanothermometers to photo-protective storage and delivery devices.

Keywords: carbon nanotubes; cathodoluminescence; heterostructures; mechanical properties; nanowires

Conference

International Symposium on Novel Materials and Their Synthesis (NMS-V) and the 19th International Symposium on Fine Chemistry and Functional Polymers (FCFP-XIX), Novel Materials and their Synthesis, NMS, Novel Materials and their Synthesis, 5th, Shanghai, China, 2009-10-18–2009-10-22

References

  • 1a

    , S. Iijima. Nature354, 56 (1991).CrossrefGoogle Scholar

  • 1b

    C. N. R. Rao, A. Govindaraj. In Nanotubes and Nanowires, The Royal Society of Chemistry, London (2005).Google Scholar

  • 2

    M. Dresselhaus, G. Dresselhaus, P. Avouris. In Carbon Nanotubes: Synthesis, Properties and Applications, Springer-Verlag, Berlin (2001).Google Scholar

  • 3

    , N. Robertson, C. A. McGowan. Chem. Soc. Rev.32, 96 (2003).CrossrefGoogle Scholar

  • 3b

    , J. Wang, C. Timchalk, Y. Lin. Environ. Sci. Technol.42, 2688 (2008).CrossrefGoogle Scholar

  • 3c

    , A. Star, Y. Lu, K. Bradley, G. Grüner. Nano Lett.4, 1587 (2004).CrossrefGoogle Scholar

  • 4a

    , J. Sloan, A. I. Kirkland, J. L. Hutchinson, M. L. H. Green. Chem. Commun. 1319 (2002).CrossrefGoogle Scholar

  • 4b

    , M. Monthioux, E. Flahaut, J.-P. Cleuziou. J. Mater. Res.21, 2774 (2006).CrossrefGoogle Scholar

  • 5

    , R. Carter, J. Sloan, A. I. Kirkland, R. R. Meyer, P. J. D. Lindan, G. Lin, M. L. H. Green, A. Vlandas, J. L. Hutchison, J. Harding. Phys. Rev. Lett.96, 215501 (2006).CrossrefGoogle Scholar

  • 6a

    , P. M. Ajayan, S. Iijima. Nature361, 333 (1993).CrossrefGoogle Scholar

  • 6b

    , H. Gao, Y. Kong, D. Cui, C. S. Ozkan. Nano Lett.3, 471 (2003).CrossrefGoogle Scholar

  • 7

    , P. M. F. J. Costa, J. Sloan, J. L. Hutchison, M. L. H. Green. Chem. Commun. 2276 (2003).CrossrefGoogle Scholar

  • 8a

    , U. K. Gautam, Y. Bando, J. Zhan, P. M. F. J. Costa, X. Fang, D. Golberg. Adv. Mater.20, 810 (2008).CrossrefGoogle Scholar

  • 8b

    , U. K. Gautam, Y. Bando, L. Bourgeois, X. Fang, P. M. F. J. Costa, J. Zhan, D. Golberg. J. Mater. Chem.19, 4414 (2009).CrossrefGoogle Scholar

  • 8c

    , U. K. Gautam, Y. Bando, X. Fang, J. Zhan, D. Golberg. ACS Nano2, 1015 (2008).CrossrefGoogle Scholar

  • 9

    , G. Sheet, U. K. Gautam, A. D. Thakur, K. Hirata, Y. Bando, T. Nakayama. Appl. Phys. Lett.94, 053108 (2009).CrossrefGoogle Scholar

  • 10a

    , T. K. Tran, W. Park, W. Tong, M. M. Kyi, B. K. Wagner, C. J. Summers. J. Appl. Phys.81, 2803 (1997).CrossrefGoogle Scholar

  • 10b

    , X. Fang, Y. Bando, M. Liao, U. K. Gautam, C. Zhi, B. Dierre, B. Liu, T. Zhai, T. Sekiguchi, Y. Koide, D. Golberg. Adv. Mater.21, 2034 (2009).CrossrefGoogle Scholar

  • 11

    , D. D. D. Ma, S. T. Lee, P. Mueller, S. F. Alvarado. Nano Lett.6, 926 (2006).CrossrefGoogle Scholar

  • 12

    , A. Kale, N. Shepherd, W. Glass, D. DeVito, M. Davidson, P. H. Holloway. J. Appl. Phys.94, 3147 (2003).CrossrefGoogle Scholar

  • 13

    , D. F. Moore, Y. Ding, Z. L. Wang. J. Am. Chem. Soc.126, 14372 (2004).CrossrefGoogle Scholar

  • 14

    , J. Zhan, Y. Bando, J. Hu, Y. Li, D. Golberg. Chem. Mater.16, 5158 (2004).CrossrefGoogle Scholar

  • 15

    , J. Hu, Y. Bando, J. Zhan, C. Zhi, D. Golberg. Nano Lett.6, 1136 (2006).CrossrefGoogle Scholar

  • 16

    , L. W. Yin, Y. Bando, Y. C. Zhu, M. S. Li. Appl. Phys. Lett.84, 5314 (2004).CrossrefGoogle Scholar

  • 17

    , J. Zhan, Y. Bando, J. Hu, D. Golberg, H. Nakanishi. J. Phys. Chem. B109, 11580 (2005).CrossrefGoogle Scholar

  • 18a

    , J. Hu, Y. Bando, J. Zhan, C. Li, D. Golberg. Adv. Mater.19, 1342 (2007).CrossrefGoogle Scholar

  • 18b

    , Y. Li, Y. Bando, D. Golberg. Adv. Mater.16, 93 (2004).CrossrefGoogle Scholar

  • 19

    , Y. Gao, Y. Band. Nature415, 599 (2002).CrossrefGoogle Scholar

  • 20a

    , P. S. Dorozhkin, S. V. Tovstonog, D. Golberg, J. Zhan, Y. Ishikawa, M. Shiozawa, H. Nakanishi, K. Nakata, Y. Bando. Small1, 1088 (2005).CrossrefGoogle Scholar

  • 20b

    , J. Zhan, Y. Bando, J. Hu, D. Golberg, H. Nakanishi. J. Phys. Chem. B109, 11580 (2005).CrossrefGoogle Scholar

  • 21a

    A. Smigelskas, E. O. Kirkendall. Trans. AIME171, 130 (1947).Google Scholar

  • 21b

    , Y. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos. Science304, 711 (2004).CrossrefGoogle Scholar

  • 21c

    , H. Jin fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, U. Gösele. Nat. Mater.5, 627 (2006).CrossrefGoogle Scholar

  • 22a

    B. G. Yacobi, D. B. Holt. In Cathodoluminescence Microscopy of Inorganic Solids, Plenum Press, New York (1990).Google Scholar

  • 22b

    , X. L. Yuan, B. Dierre, J. B. Wang, B. P. Zhang, T. Sekiguchi. J. Nanosci. Nanotechnol.7, 3323 (2007).CrossrefGoogle Scholar

  • 23

    , B. Dierre, X. L. Yuan, N. Hirosaki, T. Kimura, R. J. Xie, T. Sekiguchi. J. Mater. Res.23, 1701 (2008).CrossrefGoogle Scholar

  • 24

    , B. Dierre, X. L. Yuan, K. Inoue, N. Hirosaki, R. J. Xie, T. Sekiguchi. J. Am. Ceram. Soc.92, 1272 (2009).CrossrefGoogle Scholar

  • 25

    , X. S. Fang, U. K. Gautam, Y. Bando, B. Dierre, T. Sekiguchi, D. Golberg. J. Phys Chem. C112, 4735 (2008).CrossrefGoogle Scholar

  • 26a

    , J. J. Davies, J. E. Nicholls. J. Phys. C: Solid State Phys.12, 3329 (1979).CrossrefGoogle Scholar

  • 26b

    Y. Otomo, H. Kusumoto. Proc. Int. Conf. on Luminescence, Budapest (1966).Google Scholar

  • 27a

    , D. Stichtenoth, D. Schwen, S. Müller, C. Borchers, C. J. Ronning. J. Vac. Sci. Technol. A24, 1356 (2006).CrossrefGoogle Scholar

  • 27b

    , D. Denzler, M. Olschewski, K. Sattler. J. Appl. Phys.84, 2841 (1998).CrossrefGoogle Scholar

  • 28

    , B. Dierre, X. L. Yuan, N. Ohashi, T. Sekiguchi. J. Appl. Phys.103, 083551 (2008).CrossrefGoogle Scholar

  • 29

    , H. C. Swart. Phys. Status Solidi C1, 2354 (2004).CrossrefGoogle Scholar

  • 30

    , B. L. Abrams, P. H. Holloway. Chem. Rev.104, 5783 (2004).CrossrefGoogle Scholar

  • 31

    , D. Danailov, P. Keblinski, S. Nayak, P. M. Ajayan. J. Nanosci. Nanotechnol.2, 503 (2002).CrossrefGoogle Scholar

  • 32

    , H. Trotter, R. Phillips, B. Ni, Y. Hu, S. B. Sinnott, P. T. Mikulski, J. A. Harrison. J. Nanosci. Nanotechnol.5, 536 (2005).CrossrefGoogle Scholar

  • 33

    , P. Poncharal, Z. L. Wang, D. Ugarte, W. A. de Heer. Science283, 1513 (1999).CrossrefGoogle Scholar

  • 34

    , P. M. F. J. Costa, P. B. Cachim, U. K. Gautam, Y. Bando, D. Golberg. Mater. Sci. Forum.636–637, 665 (2010).CrossrefGoogle Scholar

  • 35

    , A. Nafari, D. Karlen, C. Rusu, K. Svensson, H. Olin, P. Enoksson. J. Microelectromech. Syst.17, 328 (2008).CrossrefGoogle Scholar

  • 36

    , D. Golberg, P. M. F. J. Costa, O. Lourie, M. Mitome, X. Bai, K. Kurashima, C. Zhi, C. Tang, Y. Bando. Nano Lett.7, 2146 (2007).CrossrefGoogle Scholar

  • 37

    , P. M. F. J. Costa, U. K. Gautam, M. Wang, Y. Bando, D. Golberg. Carbon47, 541 (2009).CrossrefGoogle Scholar

  • 38

    , P. M. F. J. Costa, P. B. Cachim, U. K. Gautam, Y. Bando, D. Golberg. Nanotechnology20, 405706 (2009).CrossrefGoogle Scholar

  • 39

    , P. M. F. J. Costa, P. B. Cachim, U. K. Gautam, Y. Bando, D. Golberg. Nanotechnology20, 405707 (2009).CrossrefGoogle Scholar

About the article

Published Online: 2010-08-06

Published in Print: 2010-08-06


Citation Information: Pure and Applied Chemistry, Volume 82, Issue 11, Pages 2097–2109, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-09-12-08.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
H.Y. Kang, C.Y. Peng, H. Paul Wang, W.-K. Lin, I.-W. Sun, and S.-G. Chang
Journal of Experimental Nanoscience, 2015, Volume 10, Number 12, Page 937
[2]
A.O. Monteiro, P.B. Cachim, and P.M.F.J. Costa
Diamond and Related Materials, 2014, Volume 44, Page 11
[3]
Daniela Bekermann, Davide Barreca, Alberto Gasparotto, and Chiara Maccato
CrystEngComm, 2012, Volume 14, Number 20, Page 6347

Comments (0)

Please log in or register to comment.
Log in