Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 82, Issue 11

Issues

Homeotropic alignment through charge-transfer-induced columnar mesophase formation in an unsymmetrically substituted triphenylene derivative

Juanjuan Li
  • Corresponding author
  • Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhiqun He
  • Corresponding author
  • Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Huan Zhao
  • Corresponding author
  • Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hemant Gopee / Xiangfei Kong
  • Corresponding author
  • Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Min Xu
  • Corresponding author
  • Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xinxin An
  • Corresponding author
  • College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Xiping Jing
  • Corresponding author
  • College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrew N. Cammidge
Published Online: 2010-08-27 | DOI: https://doi.org/10.1351/PAC-CON-09-12-17

An unsymmetrically substituted triphenylene, with two adjacent chloroethoxyethyl lateral flexible chains, was synthesized and characterized. Although this compound showed no mesomorphic behavior, it formed a donor–acceptor charge-transfer complex with 2,4,7-trinitrofluorenone (TNF). The resulting 1:1 complex has been investigated using UV–vis and IR spectroscopy, optical microscopy, thermal analysis, and X-ray diffraction. A columnar mesophase with hexagonal symmetry was found. More interestingly, this charge-transfer complex can be easily aligned on a glass surface in a homeotropic orientation, which is stable at room temperature (RT) and over a wide temperature range.

Keywords: charge-transfer complex; columnar mesophase; homeotropic alignment; triphenylene

Conference

International Symposium on Novel Materials and Their Synthesis (NMS-V) and the 19th International Symposium on Fine Chemistry and Functional Polymers (FCFP-XIX), Novel Materials and their Synthesis, NMS, Novel Materials and their Synthesis, 5th, Shanghai, China, 2009-10-18–2009-10-22

References

  • 1

    , F. Reinitzer. Monatsch. Chem.9, 421 (1888).CrossrefGoogle Scholar

  • 2

    , S. Chandrasekhar, B. K. Sadashiva, K. A. Suresh. Pramana9, 471 (1977).CrossrefGoogle Scholar

  • 3

    A. N. Cammidge, R. J. Bushby. In Handbook of Liquid Crystals, D. Demus, J. Goodby, G. W. Gray, H. W. Spiess (Eds.), Chap. VII, Wiley-VCH, New York (1998).Google Scholar

  • 4

    , R. J. Bushby, O. R. Lozman. Curr. Opin. Colloid Interface Sci.7, 343 (2002).CrossrefGoogle Scholar

  • 5

    A. N. Cammidge. Philos. Trans. R. Soc. London, Ser. A364, 2697 (2006).Google Scholar

  • 6

    , S. Kumar. Chem. Soc. Rev.35, 83 (2006).CrossrefGoogle Scholar

  • 7

    , S. Sergeyev, W. Pisula, Y. H. Geerts. Chem. Soc. Rev.36, 1902 (2007).CrossrefGoogle Scholar

  • 8

    , S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hägele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, M. Tosoni. Angew. Chem., Int. Ed. Engl.46, 4832 (2007).CrossrefGoogle Scholar

  • 9

    , S. Kumar. Liq. Cryst.36, 607 (2009).CrossrefGoogle Scholar

  • 10

    , H. K. Bisoyi, S. Kumar. Chem. Soc. Rev.39, 264 (2010).CrossrefGoogle Scholar

  • 11

    N. B. McKeown. Phthalocyanine Materials, Synthesis, Structure and Function, Cambridge University Press, Cambridge (1998).Google Scholar

  • 12

    , S. Kumar. Liq. Cryst.31, 1037 (2004).CrossrefGoogle Scholar

  • 13

    , D. Pérez, E. Guitián. Chem. Soc. Rev.33, 274 (2004).CrossrefGoogle Scholar

  • 14

    , S. Kumar. Liq. Cryst.32, 1089 (2005).CrossrefGoogle Scholar

  • 15

    , J. Wu, W. Pisula, K. Müllen. Chem. Rev.107, 718 (2007).CrossrefGoogle Scholar

  • 16a

    S. Chandrasekhar, S. K. Prasad. Contemp. Phys.40, 237 (1999).Google Scholar

  • 16b

    , H. Eichhorn. J. Porphyrins Phthalocyanines4, 88 (2000).CrossrefGoogle Scholar

  • 16c

    , W. Pisula, M. Zorn, J. Y. Chang, K. Müllen, R. Zentel. Macromol. Rapid Commun.30, 1179 (2009).CrossrefGoogle Scholar

  • 17a

    , V. Percec, C. H. Ahn, G. Ungar, D. J. P. Yeardley, M. Möller, S. S. Sheiko. Nature391, 161 (1998).CrossrefGoogle Scholar

  • 17b

    , V. S. K. Balagurusamy, G. Ungar, V. Percec, G. Johansson. J. Am. Chem. Soc.119, 1539 (1997).CrossrefGoogle Scholar

  • 17c

    , D. J. Pesak, J. S. Moore. Angew. Chem., Int. Ed. Engl.36, 1636 (1997).CrossrefGoogle Scholar

  • 18

    , J. Barberá, B. Donnio, L. Gehringer, D. Guillon, M. Marcos, A. Omenat, J. L. Serrano. J. Mater. Chem.15, 4093 (2005).CrossrefGoogle Scholar

  • 19

    , B. Xu, T. M. Swager. J. Am. Chem. Soc.115, 1159 (1993).CrossrefGoogle Scholar

  • 20a

    , V. Percec, G. Zipp, G. Johansson, U. Beginn, M. Moller. Macromol. Chem. Phys.198, 265 (1997).CrossrefGoogle Scholar

  • 20b

    , A. Schultz, S. Laschat, A. Saipa, F. Gießelmann, M. Nimtz, J. L. Schulte, A. Baro, B. Miehlich. Adv. Funct. Mater.14, 163 (2004).CrossrefGoogle Scholar

  • 21

    , J. Li, Z. He, H. Gopee, A. N. Cammidge. Org. Lett.12, 472 (2010).CrossrefGoogle Scholar

  • 22

    , P. H. Kouwer, O. van den Berg, W. F. Jager, W. J. Mijs, S. J. Picken. Macromolecules35, 2576 (2002).CrossrefGoogle Scholar

  • 23

    , D. Demus, G. Pelzl, N. K. Sharma, W. Weissflog. Mol. Cryst. Liq. Cryst.76, 241 (1981).CrossrefGoogle Scholar

  • 24

    , D. Janietz. J. Mater. Chem.8, 265 (1998).CrossrefGoogle Scholar

  • 25

    , K. Praefcke, P. Marquardt, B. Kohne, W. Stephan, A. M. Levelut, E. Wachtel. Mol. Cryst. Liq. Cryst.203, 149 (1991).CrossrefGoogle Scholar

  • 26

    , N. Boden, R. J. Bushby, Z. Lu, O. R. Lozman. Liq. Cryst.28, 657 (2001).CrossrefGoogle Scholar

  • 27

    , L. Y. Chiang, J. P. Stokes, C. R. Safinya, A. N. Bloch. Mol. Cryst. Liq. Cryst.125, 279 (1985).CrossrefGoogle Scholar

  • 28

    , H. Ringsdorf, H. Bengs, O. Karthaus, R. Wüstefeld, M. Ebert, J. H. Wendorff, B. Kohne, K. Praefcke. Adv. Mater.2, 141 (1990).CrossrefGoogle Scholar

  • 29

    , H. Ringsdorf, R. Wüstefeld, E. Zerta, M. Ebert, J. H. Wendorff. Angew. Chem., Int. Ed. Engl.28, 914 (1989).CrossrefGoogle Scholar

  • 30

    , H. Bengs, O. Karthaus, H. Ringsdorf, C. Baehr, M. Ebert, J. H. Wendorff. Liq. Cryst.10, 161 (1991).CrossrefGoogle Scholar

  • 31

    W. Fimmen, B. Glusen, A. Kettner, M. Wittenberg, J. H. Wendorff. Liq. Cryst.23, 569 (1997).Google Scholar

  • 32

    , K. Praefcke, D. Singer, B. Kohne, M. Ebert, A. Liebmann, J. H. Wendorff. Liq. Cryst.10, 147 (1991).CrossrefGoogle Scholar

  • 33

    , K. Praefcke, D. Singer, M. Langner, B. Kohne, M. Ebert, A. Liebmann, J. H. Wendorff. Mol. Cryst. Liq. Cryst.215, 121 (1992).CrossrefGoogle Scholar

  • 34

    , L. Calucci, H. Zimmermann, E. J. Wachtel, R. Poupko, Z. Luz. Liq. Cryst.22, 621 (1997).CrossrefGoogle Scholar

  • 35a

    , C. A. Hunter, J. K. M. Sanders. J. Am. Chem. Soc.112, 5525 (1990).CrossrefGoogle Scholar

  • 35b

    , C. A. Hunter. Angew. Chem., Int. Ed. Engl.32, 1584 (1993).CrossrefGoogle Scholar

  • 36

    , E. O. Arikainen, N. Boden, R. J. Bushby, O. R. Lozman, J. G. Vinter, A. Wood. Angew. Chem., Int. Ed.39, 2333 (2000).CrossrefGoogle Scholar

  • 37

    , N. Boden, R. J. Bushby, O. R. Lozman. Mol. Cryst. Liq. Cryst.411, 345 (2004).CrossrefGoogle Scholar

  • 38

    , A. M. van de Craats, N. Stutzmann, O. Bunk, M. M. Nielsen, M. D. Watson, K. Müllen, H. D. Chanzy, H. Sirringhaus, R. H. Friend. Adv. Mater.15, 495 (2003).CrossrefGoogle Scholar

  • 39a

    , L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R. H. Friend, J. D. MacKenzie. Science293, 1119 (2001).CrossrefGoogle Scholar

  • 39b

    , J. P. Schmidtke, R. H. Friend, M. Kastler, K. Müllen. J. Chem. Phys.124, 174704 (2006).CrossrefGoogle Scholar

  • 40a

    10.1002/adma.19970090110, J. H. Wendorff, T. Christ, B. Glusen, A. Greiner, A. Kettner, R. Sander, V. Stumpflen, V. Tsukruk. Adv. Mater.9, 48 (1997).Google Scholar

  • 40b

    , H. Mao, Z. He, J. Wang, C. Zhang, P. Xie, R. Zhang. J. Lumin.122–123, 942 (2007).CrossrefGoogle Scholar

  • 41

    , H.-T. Jung, S. O. Kim, Y. K. Ko, D. K. Yoon, S. D. Hudson, V. Percec, M. N. Holerca, W.-D. Cho, P. E. Mosier. Macromolecules35, 3717 (2002).CrossrefGoogle Scholar

  • 42

    , H. Wegner, K. Weiss, M. Grunze, C. Wöll. Appl. Phys. A65, 231 (1997).CrossrefGoogle Scholar

  • 43

    , J. C. Gabriel, N. B. Larsen, N. Harrit, J. S. Pedersen, K. Schaumburg, K. Bechgaard. Langmuir12, 1690 (1996).CrossrefGoogle Scholar

  • 44

    , A. N. Cammidge, H. Gopee. J. Mater. Chem.11, 2773 (2001).CrossrefGoogle Scholar

  • 45

    , N. Terasawa, H. Monobe, K. Kiyohara, Y. Shimizu. Chem. Commun. 1678 (2003).CrossrefGoogle Scholar

  • 46

    , V. Percec, M. Glodde, T. K. Bera, Y. Miura, I. Shiyanovskaya, K. D. Singer, V. S. K. Balagurusamy, P. A. Heiney, I. Schnell, A. Rapp, H.-W. Spiess, S.-D. Hudson, H. Duan. Nature417, 384 (2002).CrossrefGoogle Scholar

  • 47

    , C. Vauchier, A. Zann, P. Le Barny, J. C. Dubois, J. Billard. Mol. Cryst. Liq. Cryst.66, 103 (1981).CrossrefGoogle Scholar

  • 48

    , K. Kawata. Chem. Rec.2, 59 (2002).CrossrefGoogle Scholar

  • 49

    , D. Adam, F. Closs, T. Frey, D. Funhoff, D. Haarer, H. Ringsdorf, P. Schuhmacher, K. Siemensmeyer. Phys. Rev. Lett.70, 457 (1993).CrossrefGoogle Scholar

  • 50

    , R. I. Gearba, D. V. Anokhin, A. I. Bondar, W. Bras, M. Jahr, M. Lehmann, D. A. Ivanov. Adv. Mater.19, 815 (2007).CrossrefGoogle Scholar

  • 51

    , M. Steinhart, S. Zimmermann, P. Göring, A. K. Schaper, U. Gösele, C. Weder, J. H. Wendorff. Nano Lett.5, 429 (2005).CrossrefGoogle Scholar

  • 52

    , S. H. Eichhorn, A. Adavelli, H. S. Li, N. Fox. Mol. Cryst. Liq. Cryst.397, 347 (2003).CrossrefGoogle Scholar

  • 53

    , I. O. Shklyarevskiy, P. Jonkheijm, N. Stutzmann, D. Wasserberg, H. J. Wondergem, P. C. M. Christianen, A. P. H. J. Schenning, D. M. de Leeuw, ?. Tomovi?, J. Wu, K. Müllen, J. C. Maan. J. Am. Chem. Soc.127, 16233 (2005).CrossrefGoogle Scholar

  • 54

    , S. Furumi, D. Janietz, M. Kidowaki, M. Nakagawa, S. Morino, J. Stumpe, K. Ichimura. Chem. Mater.13, 1434 (2001).CrossrefGoogle Scholar

  • 55a

    , H. Monobe, K. Kiyohara, N. Terasawa, M. Heya, K. Awazu, Y. Shimizu. Thin Solid Films438–439, 418 (2003).CrossrefGoogle Scholar

  • 55b

    , H. Monobe, N. Terasawa, Y. Shimizu, K. Kiyohara, M. Heya, K. Awazu. Mol. Cryst. Liq. Cryst.443, 211 (2005).CrossrefGoogle Scholar

  • 56

    , H. Monobe, H. Hori, M. Heya, K. Awazu, Y. Shimizu. Thin Solid Films499, 259 (2006).CrossrefGoogle Scholar

  • 57

    , E. Charlet, E. Grelet, P. Brettes, H. Bock, H. Saadaoui, L. Cisse, P. Destruel, N. Gherardi, I. Seguy. Appl. Phys. Lett.92, 024107 (2008).CrossrefGoogle Scholar

  • 58

    , J. Wang, Z. He, Y. Zhang, H. Zhao, C. Zhang, X. Kong, L. Mu, C. Liang. Thin Solid Films518, 1973 (2010).CrossrefGoogle Scholar

  • 59

    , G. Schweicher, G. Gbabode, F. Quist, O. Debever, N. Dumont, S. Sergeyev, Y. H. Geerts. Chem. Mater.21, 5867 (2009).CrossrefGoogle Scholar

  • 60a

    , N. Boden, R. C. Borner, R. J. Bushby, A. N. Cammidge, M. V. Jesudason. Liq. Cryst.15, 851 (1993).CrossrefGoogle Scholar

  • 60b

    , N. Boden, R. J. Bushby, A. N. Cammidge. J. Chem. Soc., Chem. Commun. 465 (1994).CrossrefGoogle Scholar

  • 60c

    , N. Boden, R. J. Bushby, A. N. Cammidge. J. Am. Chem. Soc.117, 924 (1995).CrossrefGoogle Scholar

  • 61

    , W. Wan, H. Monobe, Y. Tanaka, Y. Shimizu. Liq. Cryst.30, 571 (2003).CrossrefGoogle Scholar

  • 62

    1H NMR (CDCl3, TMS, 400 MHz): δH 7.91(2H, s, ArH-5,12), 7.83 (4H, d, J = 3.1 Hz, ArH-1,4,8,9), 4.42 (4H, t, J = 4.5 Hz, ArOCH2CH2OCH2CH2Cl), 4.21–4.25 (12H, m, OCH2(CH2)4CH3), 4.02 (4H, t, J = 4.7 Hz, ArOCH2CH2OCH2CH2Cl), 3.92 (4H, t, J = 5.8 Hz, ArO(CH2)2OCH2CH2Cl), 3.71 (4H, t, J = 5.8 Hz, ArOCH2CH2OCH2CH2Cl), 1.98-1.91 (8H, m, OCH2CH2), 1.39–1.59 (24H, m, O(CH2)2(CH2)3CH3), 0.94 (12H, t, J = 7.1 Hz, CH3); 13C NMR (CDCl3; 75.45 MHz): δC 149.3, 148.6, 124.4, 123.8, 123.6, 108.7, 107.5, 107.3,70.5, 71.8, 70.2, 69.9, 69.8, 69.5, 43.1, 31.9, 29.6, 26.0, 22.9, 14.3; elemental analysis for C50H74O8Cl: required C 68.71, H 8.53; found C 68.45, H 8.49; mass spectrum (m/z, ES) measured 895.5 ([M + Na]+, 100 %).Google Scholar

  • 63

    , G. Kruk, A. Kocot, R. Wrzalik, J. K. Vij. Liq. Cryst.14, 807 (1993).CrossrefGoogle Scholar

  • 64

    O. Woolfolk, M. Orchin. Org. Synth., Coll.3, 837 (1955).Google Scholar

  • 65a

    , K. Praefcke, J. D. Holbrey. J. Inclusion Phenom. Mol. Recognit. Chem.24, 19 (1996).CrossrefGoogle Scholar

  • 65b

    , M. Ebert, G. Frick, C. Baehr, J. H. Wendorff, R. Wüstefeld, H. Ringsdorf. Liq. Cryst.11, 293 (1992).CrossrefGoogle Scholar

  • 66

    , E. O. Arikainen, N. Boden, R. J. Bushby, J. Clements, B. Movaghar, A. Wood. J. Mater. Chem.5, 2161 (1995).CrossrefGoogle Scholar

About the article

Published Online: 2010-08-27

Published in Print: 2010-08-27


Citation Information: Pure and Applied Chemistry, Volume 82, Issue 11, Pages 1993–2003, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-09-12-17.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Rafael L. Coelho, Eduard Westphal, Daniela Z. Mezalira, and Hugo Gallardo
Liquid Crystals, 2016, Page 1
[2]
Lucas A. Haverkate, Mohamed Zbiri, Mark R. Johnson, Elizabeth Carter, Arek Kotlewski, S. Picken, Fokko M. Mulder, and Gordon J. Kearley
The Journal of Chemical Physics, 2014, Volume 140, Number 1, Page 014903
[3]
Santanu Kumar Pal, Shilpa Setia, B.S. Avinash, and Sandeep Kumar
Liquid Crystals, 2013, Volume 40, Number 12, Page 1769
[4]
Lucas A. Haverkate, Mohamed Zbiri, Mark R. Johnson, Bruno Deme, Huub J. M. de Groot, Fons Lefeber, Arkadiusz Kotlewski, Stephen J. Picken, Fokko M. Mulder, and Gordon J. Kearley
The Journal of Physical Chemistry B, 2012, Volume 116, Number 43, Page 13098
[5]
Hugo Gallardo, Marli Ferreira, André A. Vieira, Eduard Westphal, Fernando Molin, Juliana Eccher, and Ivan H. Bechtold
Tetrahedron, 2011, Volume 67, Number 49, Page 9491
[6]
Xiangfei Kong, Zhiqun He, Hemant Gopee, and Andrew N. Cammidge
Liquid Crystals, 2011, Volume 38, Number 8, Page 943

Comments (0)

Please log in or register to comment.
Log in