Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2018: 2.350
5-year IMPACT FACTOR: 4.037

CiteScore 2018: 4.66

SCImago Journal Rank (SJR) 2018: 1.240
Source Normalized Impact per Paper (SNIP) 2018: 1.826

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 82, Issue 11

Issues

Design and synthesis of fluorescence-based siderophore sensor molecules for FeIII ion determination

Bao-Lian Su
  • Corresponding author
  • Laboratory of Inorganic Materials Chemistry, The University of Namur (FUNDP), 61 rue de Bruxelles, B-5000, Namur, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nicolas Moniotte
  • Corresponding author
  • Laboratory of Inorganic Materials Chemistry, The University of Namur (FUNDP), 61 rue de Bruxelles, B-5000, Namur, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Noan Nivarlet
  • Corresponding author
  • Laboratory of Inorganic Materials Chemistry, The University of Namur (FUNDP), 61 rue de Bruxelles, B-5000, Namur, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ge Tian
  • Corresponding author
  • Laboratory of Inorganic Materials Chemistry, The University of Namur (FUNDP), 61 rue de Bruxelles, B-5000, Namur, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jonathan Desmet
  • Corresponding author
  • Laboratory of Inorganic Materials Chemistry, The University of Namur (FUNDP), 61 rue de Bruxelles, B-5000, Namur, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-08-19 | DOI: https://doi.org/10.1351/PAC-CON-10-02-05

The design principles of fluorescence-based siderophore sensor molecules for detection of heavy transition-metal (HTM) ions are first reviewed. As an example, fluorescein-desferrioxamine (FlDFO), a highly efficient fluorophore molecule combining a specific Fe ion receptor and a fluorescence-sensitive signalling site has been designed, synthesized, and used for dosing with Fe ions. Its response test shows its high selectivity and sensitivity to FeIII ions and its potential for nanobiosensor design. This work clearly identified that among two FlDFO positional isomers differing by the attachment of DFO at the 5- or 6-position of the bottom benzene ring of Fl, the fluorescence of 6-FlDFO is insensitive to the complexation with Fe ions. This is independent of the linkage used between Fl and DFO. Only 5-FlDFO could be a highly potential sensor molecule since it has been revealed that in a free state without complexation with Fe ions, this fluoroionophore sensor molecule gave a maximum fluorescent signal. With successive Fe ion complexing, the fluorescence of 5-FlDFO decreased very sensitively and proportionally with ion concentration. The response speed has been evaluated as a function of Fe ion concentration. Responses to other metal ions present in the solution, such as Cu2+, Ca2+, Ni2+, and Al3+, and the effect of pH value on the efficiency of the sensor molecules have also been investigated.

Keywords: photoinduced electron transfer (PET); ferric ion dosing; fluorescein-desferrioxamine (FlDFO); fluoroionophore sensor; heavy transition metals; molecular probe

Conference

International Symposium on Novel Materials and Their Synthesis (NMS-V) and the 19th International Symposium on Fine Chemistry and Functional Polymers (FCFP-XIX), Novel Materials and their Synthesis, NMS, Novel Materials and their Synthesis, 5th, Shanghai, China, 2009-10-18–2009-10-22

References

  • 1

    , X. He, H. Liu, Y. Li, S. Wang, Y. Li, N. Wang, J. Xiao, X. Xu, D. Zhu. Adv. Mater.17, 2811 (2005).CrossrefGoogle Scholar

  • 2

    , R. Metivier, I. Leray, B. Lebeau, B. J. Valeur. J. Mater. Chem.15, 2965 (2005).CrossrefGoogle Scholar

  • 3

    , J. Ueberfeld, N. Parthasarathy, H. Zbinden, N. Gisin, J. Buffle. Anal. Chem.74, 664 (2002).CrossrefGoogle Scholar

  • 4

    , S. A. Yamanaka, D. H. Charych, D. A. Loy, D. Y. Sasaki. Langmuir13, 5049 (1997).CrossrefGoogle Scholar

  • 5

    A. Fernandez-Gutierrez, A. Munos de la Pena. Molecular Luminescence Spectroscopy: Part I: Methods and Applications, p. 371, Wiley-Interscience, New York (1985).Google Scholar

  • 6

    , R. B. Thompson, B. P. Maliwal, V. L. Feliccia. Anal. Chem.70, 4717 (1998).CrossrefGoogle Scholar

  • 7

    , R. Purrello, S. Gurrieri, R. Lauceri. Coord. Chem. Rev.190-192, 683 (1999).CrossrefGoogle Scholar

  • 8

    , Y. Lu. Chem.—Eur. J.8, 4588 (2002).CrossrefGoogle Scholar

  • 9

    S. Hutschenreiter, L. Neumann, U. Raedler, L. Schmitt, R. Tampe. Chem. Biol. Chem.4, 1340 (2003).Google Scholar

  • 10

    , Z. Wu, Q. Chen, G. Yang, C. Xiao, J. Liu, S. Yang, J. S. Ma. Sens. Actuators, B99, 511 (2004).CrossrefGoogle Scholar

  • 11

    , J. P. Sumner, N. M. Wetserberg, A. K. Stoddard, C. A. Fierke, R. Kopelman. Sens. Actuators, B113, 760 (2006).CrossrefGoogle Scholar

  • 12

    T. Arakawa, A. Muraki, M. Hashimoto. Sens. Actuators, B108, 832 (2005).Google Scholar

  • 13

    , M. Sandor, F. Geistmann, M. Schuster. Anal. Chim. Acta388, 19 (1999).CrossrefGoogle Scholar

  • 14

    , G. Q. Zhang, G. Q. Yang, L. N. Zhu, Q. Q. Chen, J. S. Ma. Sens. Actuators, B114, 995 (2006).CrossrefGoogle Scholar

  • 15

    L. J. Maz, Y. F. Liu, Y. Q. Wu. Chem. Commun. 2702 (2006).Google Scholar

  • 16

    B. Ranachandram. Chem. Lett.31, 52 (2002).Google Scholar

  • 17

    , B. Ramachandram, G. Sorjoa, N. B. Sankaran, A. Samanta. J. Phys. Chem. B104, 11824 (2000).CrossrefGoogle Scholar

  • 18

    , L. Zang, R. C. Liu, M. W. Holman, K. T. Nguyen, D. M. Adams. J. Am. Chem. Soc.124, 10640 (2002).CrossrefGoogle Scholar

  • 19

    , B. Valeur, I. Leray. Coord. Chem. Rev.205, 3 (2000).CrossrefGoogle Scholar

  • 20

    , B. P. Esposito, W. Breuer, Z. I. Cabantchik. Biochem. Soc. Trans.30, 729 (2002).CrossrefGoogle Scholar

  • 21

    , D. Van der Helm, J. R. Baker, D. L. Eng-Wilmot, M. B. Hossain, R. A. Loghry. J. Am. Chem. Soc.102, 4224 (1980).CrossrefGoogle Scholar

  • 22

    , E. A. Dertz, J. D. Xu, A. Stintz, K. N. Raymond. J. Am. Chem. Soc.128, 22 (2006).CrossrefGoogle Scholar

  • 23

    , C. J. Carrano, K. N. Raymond. J. Am. Chem. Soc.101, 5401 (1979).CrossrefGoogle Scholar

  • 24

    , H. Keberle. Ann. N.Y. Acad. Sci.119, 758 (1964).CrossrefGoogle Scholar

  • 25

    A. Bye, H. K. King. Biochem. J.117, 237 (1970).Google Scholar

  • 26

    , L. I. Grossweiner, A. F. Rodde. J. Phys. Chem.72, 756 (1968).CrossrefGoogle Scholar

  • 27

    S. D. Lytton, Z. I. Cabantchik, J. Libman, A. Shanzer. Mol. Pharmacol.40, 584 (1991).Google Scholar

  • 28

    , M. Loyevsky, S. D. Lytton, B. Mester, J. Libman, A. Shanzer, Z. I. Cabantchik. J. Clin. Invest.91, 218 (1993).CrossrefGoogle Scholar

  • 29

    , M. Mureseanu, G. Renard, A. Galarneau, D. A. Lerner. Talanta60, 515 (2003).CrossrefGoogle Scholar

  • 30

    , W. Breuer, J. J. Ermers, P. Pootrakul, A. Abramov, C. Hershko, Z. I. Cabantchik. Blood97, 792 (2001).CrossrefGoogle Scholar

  • 31

    , C. K. S. Chung Chun Lam, T. D. Jickells, D. J. Richardson, D. A. Russell. Anal. Chem.78, 5040 (2006).CrossrefGoogle Scholar

  • 32

    T. Palanché, F. Marmolle, M. A. Abdallah, A. Shanzer, A. M. Albrecht-Gary. J. Bioinorg. Chem.4, 188 (1999).Google Scholar

About the article

Published Online: 2010-08-19

Published in Print: 2010-08-19


Citation Information: Pure and Applied Chemistry, Volume 82, Issue 11, Pages 2199–2216, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-10-02-05.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Hector Aguilar Vitorino, Priscila Ortega, Roxana Y. Pastrana Alta, Flavia Pinheiro Zanotto, and Breno Pannia Espósito
Environmental Science and Pollution Research, 2018
[2]
Rahim Nosrati, Sadegh Dehghani, Bahareh Karimi, Meysam Yousefi, Seyed Mohammad Taghdisi, Khalil Abnous, Mona Alibolandi, and Mohammad Ramezani
Biosensors and Bioelectronics, 2018
[3]
Rachel Codd, Tomas Richardson-Sanchez, Thomas J. Telfer, and Michael P. Gotsbacher
ACS Chemical Biology, 2017
[4]
Tsukiho Hayashi, Ayumi Osawa, Takehiro Watanabe, Yoshiko Murata, Atsushi Nakayama, and Kosuke Namba
Tetrahedron Letters, 2017, Volume 58, Number 20, Page 1961
[5]
François Delattre, Francine Cazier-Dennin, Ludovic Leleu, Dorothée Dewaele, David Landy, Isabelle Mallard, and Pierre-Edouard Danjou
Talanta, 2015, Volume 144, Page 451
[6]
Fei Yan, Yam K. Shrestha, and Charina L. Spurgeon
Chemical Communications, 2013, Volume 49, Number 72, Page 7962
[7]
Haowen Huang, Fang Liu, Shenna Chen, Qian Zhao, Bo Liao, Yunfei Long, Yunlong Zeng, and Xiaodong Xia
Biosensors and Bioelectronics, 2013, Volume 42, Page 539
[8]
Bao-Lian Su, Nicolas Moniotte, Noan Nivarlet, Li-Hua Chen, Zheng-Yi Fu, Jonathan Desmet, and Jing Li
Journal of Colloid and Interface Science, 2011, Volume 358, Number 1, Page 136

Comments (0)

Please log in or register to comment.
Log in