Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2016: 2.626
5-year IMPACT FACTOR: 3.210

CiteScore 2016: 2.45

SCImago Journal Rank (SJR) 2016: 0.972
Source Normalized Impact per Paper (SNIP) 2016: 1.049

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 82, Issue 3 (Feb 2010)

Issues

Synthesis and structure of stable 1,2-diaryldisilyne

Takahiro Sasamori
  • Corresponding author
  • Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
/ Joon Soo Han
  • Corresponding author
  • Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
/ Koji Hironaka
  • Corresponding author
  • Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
/ Nozomi Takagi
  • Corresponding author
  • Department of Theoretical Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
/ Shigeru Nagase
  • Corresponding author
  • Department of Theoretical Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan
/ Norihiro Tokitoh
  • Corresponding author
  • Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
Published Online: 2010-02-24 | DOI: https://doi.org/10.1351/PAC-CON-09-08-02

A novel 1,2-diaryldisilyne, BbtSi≡SiBbt (Bbt = 2,6-bis[bis(trimethylsilyl)methyl]-4-[tris(trimethylsilyl)methyl]phenyl), was synthesized as a stable compound by reduction of the corresponding 1,2-dibromodisilene, Bbt(Br)Si=Si(Br)Bbt. The spectral and structural features of this first stable 1,2-diaryldisilyne are revealed, and the Si≡Si triple-bond character is evaluated with the aid of detailed theoretical calculations. The triple-bond characters of BbtSi≡SiBbt and BbtGe≡GeBbt are compared based on experimental and theoretical results.

Keywords: dibromodisilene; digermyne; disilyne; kinetic stabilization; triple bond

Conference

International Conference on Heteroatom Chemistry (ICHAC-9), International Conference on Heteroatom Chemistry, ICHAC, Heteroatom Chemistry, 9th, Oviedo, Spain, 2009-06-30–2009-07-04

References

  • 1a

    , For recent reviews, see: P. P. Power. Chem. Rev. 99, 3463 (1999).CrossrefGoogle Scholar

  • 1b

    , N. Tokitoh, R. Okazaki. Coord. Chem. Rev. 210, 251 (2000).CrossrefGoogle Scholar

  • 1c

    , M. Kira, T. Iwamoto. J. Organomet. Chem. 611, 236 (2000).CrossrefGoogle Scholar

  • 1d

    , P. Jutzi. Angew. Chem., Int. Ed. 39, 3797 (2000).CrossrefGoogle Scholar

  • 1e

    , N. Tokitoh, R. Okazaki. Adv. Organomet. Chem. 47, 121 (2001).CrossrefGoogle Scholar

  • 1f

    , M. Weidenbruch. J. Organomet. Chem. 646, 39 (2002).CrossrefGoogle Scholar

  • 1g

    , M. Weidenbruch. Organometallics 22, 4348 (2003).CrossrefGoogle Scholar

  • 1h

    , V. Y. Lee, A. Sekiguchi. Organometallics 23, 2822 (2004).CrossrefGoogle Scholar

  • 1i

    T. Sasamori, N. Tokitoh. In Encyclopedia of Inorganic Chemistry, 2nd ed., R. B. King (Ed.), p. 1698, John Wiley, Chichester (2005).Google Scholar

  • 1j

    , M. Kira, T. Iwamoto. Adv. Organomet. Chem. 54, 73 (2006).CrossrefGoogle Scholar

  • 2a

    , P. J. Davidson, M. F. Lappert. J. Chem. Soc., Chem. Commun. 317a (1973).CrossrefGoogle Scholar

  • 2b

    , P. J. Davidson, D. H. Harris, M. F. Lappert. J. Chem. Soc., Dalton Trans. 2268 (1976).CrossrefGoogle Scholar

  • 2c

    , D. E. Goldberg, D. H. Harris, M. F. Lappert, K. M. Thomas. J. Chem. Soc., Chem. Commun. 261 (1976).CrossrefGoogle Scholar

  • 2d

    , D. E. Goldberg, P. B. Hitchcock, M. F. Lappert, K. M. Thomas, A. J. Thorne, T. Fjeldberg, A. Haaland, B. E. R. Schilling. J. Chem. Soc., Dalton Trans. 2387 (1986).CrossrefGoogle Scholar

  • 3

    , R. West, M. J. Fink, J. Michl. Science 214, 1343 (1981).CrossrefGoogle Scholar

  • 4a

    , For recent reviews, see: P. P. Power. Chem. Commun. 2091 (2003).CrossrefGoogle Scholar

  • 4b

    , M. Weidenbruch. Angew. Chem., Int. Ed. 44, 514 (2005).CrossrefGoogle Scholar

  • 4c

    , A. Sekiguchi, M. Ichinohe, R. Kinjo. Bull. Chem. Soc. Jpn. 79, 825 (2006).CrossrefGoogle Scholar

  • 4d

    , E. Rivard, P. P. Power. Inorg. Chem. 46, 10047 (2007).CrossrefGoogle Scholar

  • 4e

    , P. P. Power. Organometallics 26, 4362 (2007).CrossrefGoogle Scholar

  • 4f

    , A. Sekiguchi. Pure Appl. Chem. 80, 447 (2008).CrossrefGoogle Scholar

  • 5

    , M. Stender, A. D. Phillips, R. J. Wright, P. P. Power. Angew. Chem., Int. Ed. 41, 1785 (2002).CrossrefGoogle Scholar

  • 6a

    , A. D. Phillips, R. J. Wright, M. M. Olmstead, P. P. Power. J. Am. Chem. Soc. 124, 5930 (2002).CrossrefGoogle Scholar

  • 6b

    , R. C. Fischer, L. H. Pu, J. C. Fettinger, M. A. Brynda, P. P. Power. J. Am. Chem. Soc. 128, 11366 (2006).CrossrefGoogle Scholar

  • 7

    , L. H. Pu, B. Twamley, P. P. Power. J. Am. Chem. Soc. 122, 3524 (2000).CrossrefGoogle Scholar

  • 8

    , C. M. Cui, M. M. Olmstead, J. C. Fettinger, G. H. Spikes, P. P. Power. J. Am. Chem. Soc. 127, 17530 (2005).CrossrefGoogle Scholar

  • 9a

    , N. Takagi, S. Nagase. Organometallics 26, 3627 (2007).CrossrefGoogle Scholar

  • 9b

    , N. Takagi, S. Nagase. Organometallics 26, 469 (2007).CrossrefGoogle Scholar

  • 10

    , R. Pietschnig, R. West, D. R. Powell. Organometallics 19, 2724 (2000).CrossrefGoogle Scholar

  • 11

    , N. Wiberg, S. K. Vasisht, G. Fischer, P. Mayer. Z. Anorg. Allg. Chem. 630, 1823 (2004).CrossrefGoogle Scholar

  • 12

    , A. Sekiguchi, R. Kinjyo, M. Ichinohe. Science 305, 1755 (2004).CrossrefGoogle Scholar

  • 13a

    , K. Kobayashi, S. Nagase. Organometallics 16, 2489 (1997).CrossrefGoogle Scholar

  • 13b

    , S. Nagase, K. Kobayashi, N. Takagi. J. Organomet. Chem. 611, 264 (2000).CrossrefGoogle Scholar

  • 13c

    , N. Takagi, S. Nagase. Eur. J. Inorg. Chem. 2775 (2002).CrossrefGoogle Scholar

  • 14

    , T. Sasamori, K. Hironaka, Y. Sugiyama, N. Takagi, S. Nagase, Y. Hosoi, Y. Furukawa, N. Tokitoh. J. Am. Chem. Soc. 130, 13856 (2008).CrossrefGoogle Scholar

  • 15

    , Y. Sugiyama, T. Sasamori, Y. Hosoi, Y. Furukawa, N. Takagi, S. Nagase, N. Tokitoh. J. Am. Chem. Soc. 128, 1023 (2006).CrossrefGoogle Scholar

  • 16

    When THF was used as a solvent, disilyne 1 was obtained with an unidentified side product that was difficult to separate. No such side product was observed with the THF/Et2O mixed solvent system.Google Scholar

  • 17

    , M. Karni, Y. Apeloig, N. Takagi, S. Nagase. Organometallics 24, 6319 (2005).CrossrefGoogle Scholar

  • 18

    NMR spectral data of 5: 1H NMR (300 MHz, C6D6): δ 0.23 (s, 18H), 0.32 (s, 18H), 0.36 (s, 18H), 0.36 (s, 54H), 0.43 (s, 18H), 1.97 (s, 2H), 5.93 (s, 2H), 6.95 (d, 4JHH = 1.8 Hz, 2H), 7.00 (d, 4JHH = 1.8 Hz, 2H); 13C NMR (75 MHz, C6D6): δ 1.05 (q), 1.52 (q), 1.60 (q), 2.28 (q), 5.13 (q), 22.73 (s), 24.39 (d), 29.63 (d), 124.57 (d), 128.01 (d), 133.62 (s), 148.12 (s), 148.38 (s), 157.26 (s); 29Si NMR (59 MHz, C6D6): δ –25.1, 0.76, 0.99, 1.05, 1.59, 3.59.Google Scholar

  • 19

    Crystal data for [1_2C7H8]: C74H150Si16, M = 1489.38, T = 103 (2) K, tetragonal, P42212 (no. 94), 0.10 ? 0.05 ? 0.02 mm3, a = b = 16.6701(4) Å, c = 33.7498(11) Å, V = 9378.8(4) Å3, Z = 4, Dcalc = 1.055 g_cm–3, μ = 0.252 mm–1, 2θmax = 50.0, 70 378 measured reflections, 8253 independent reflections (Rint = 0.1966), 446 refined parameters, GOF = 1.026, R1 = 0.0723 and wR2 = 0.1497 [I > 2σ(I)], R1 = 0. 1762 and wR2 = 0.2028 (for all data), largest diff. peak and hole 0.401 and –0.574 e.Å–3.Google Scholar

  • 20

    , N. Takagi, S. Nagase. J. Organomet. Chem. 692, 217 (2007).CrossrefGoogle Scholar

  • 21

    Frequency calculations were not performed at this stage because of the huge cost for computations.Google Scholar

  • 22

    Numerous reports describe theoretical studies of a disilyne and related compounds. For recent examples, see.Google Scholar

  • 22a

    , M. Takahashi, K. Sakamoto. J. Phys. Chem. A 108, 5710 (2004).CrossrefGoogle Scholar

  • 22b

    , A. J. Bridgeman, L. R. Ireland. Polyhedron 20, 2841 (2001).CrossrefGoogle Scholar

  • 23

    Theoretical calculations for BbtGe?GeBbt (6) were performed at the B3PW91/6-311+G(2df)[Ge]: 6-31G(d)[Si,C,H] level. Although the basis sets for Si atoms of the substituents differ between the calculations for BbtGe?GeBbt and those for BbtSi?SiBbt, these results and discussions are reliable as a qualitative investigation.Google Scholar

  • 24

    , A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen, F. J. Timmers. Organometallics 15, 1518 (1996).CrossrefGoogle Scholar

About the article

Published Online: 2010-02-24

Published in Print: 2010-02-24


Citation Information: Pure and Applied Chemistry, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-09-08-02.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in