Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 82, Issue 4

Issues

Variation of aromaticity by twisting or expanding the ring content

Remi Chauvin
  • Corresponding author
  • Laboratory of Coordination Chemistry (LCC), CNRS, 205, Route de Narbonne, F-31077 Toulouse, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Christine Lepetit
  • Corresponding author
  • Laboratory of Coordination Chemistry (LCC), CNRS, 205, Route de Narbonne, F-31077 Toulouse, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Valérie Maraval
  • Corresponding author
  • Laboratory of Coordination Chemistry (LCC), CNRS, 205, Route de Narbonne, F-31077 Toulouse, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Léo Leroyer
  • Corresponding author
  • Laboratory of Coordination Chemistry (LCC), CNRS, 205, Route de Narbonne, F-31077 Toulouse, France
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-03-26 | DOI: https://doi.org/10.1351/PAC-CON-09-11-07

Generalization of the Hückel rule predicts that the (anti)aromaticity of a neutral ring is qualitatively reverted upon a single twist of the π-orbital array (Möbius interconversion), and is preserved upon expansion of all the bonds by single C2 units (ring carbo-merization). These opposite effects are addressed from quantitative theoretical and experimental standpoints, respectively. (i) According to most resonance energy (RE) schemes, the RE value of a Möbius ring is not the opposite of that of the Hückel version. This also applies to the Aihara’s and Trinajstic’s topological resonance energy (TRE), where a non-aromatic reference in the topological limit is defined as being “as identical as possible” to the parent ring but just “acyclic”. In spite of its conceptual merits, the computing complexity and fictitious character of the TRE acyclic reference resulted in a disuse of TRE as a current energetic aromaticity index. Both the calculation and interpretation of TRE have been revisited in light of a cross-reference between the Hückel and Möbius rings within the Hückel molecular orbital (HMO) framework. Whereas the topological influence of triple bonds is currently neglected in the first-level HMO treatment of π-conjugated systems, a graph-theoretical analysis allows one to differentiate the TRE value of a [3n]annulene from those of the corresponding carbo-[n]annulene. The C18 ring of carbo-benzene is thus predicted to be slightly more topologically aromatic than that of [18]annulene. (ii) Recent experimental and density functional theory (DFT) theoretical studies of quadrupolar carbo-benzene derivatives are presented. The results show that the “flexible aromaticity” of the p-C18Ph4 bridge between donor anisyl substituents plays a crucial role in determining the intriguing chemical/spectroscopical/optical properties of these carbo-chromophores.

Keywords: aromaticity; carbo-benzene; Möbius ring; topological resonance energy; triple bond

Conference

International Symposium on Novel Aromatic Compounds (ISNA-13), International Symposium on Novel Aromatic Compounds, ISNA, Novel Aromatic Compounds, 13th, Luxembourg City, Luxembourg, 2009-07-19–2009-07-24

References

  • 1a

    V. I. Minkin, M. N. Glukhovtsev, B. Ya. Simkin. Aromaticity and Antiaromaticity, pp. 6–38, John Wiley, New York (1994).Google Scholar

  • 1b

    , P. v. R. Schleyer, P. K. Freeman, H. Jiao, B. Goldfuss. Angew. Chem., Int. Ed. Engl.34, 337 (1995).CrossrefGoogle Scholar

  • 1c

    , P. v. R. Schleyer, C. Merker, A. Dransfeld, H. Jiao, N. J. R. v. E. Hommes. J. Am. Chem. Soc.118, 6317 (1996).CrossrefGoogle Scholar

  • 1d

    , P. v. R. Schleyer, H. Jiao. Pure Appl. Chem.68, 209 (1996).CrossrefGoogle Scholar

  • 1e

    , T. M. Krygowski, M. K. Cyranski, Z. Czarnocki, G. Häfelinger, A. R. Katritzky. Tetrahedon56, 1783 (2000).CrossrefGoogle Scholar

  • 1f

    P. v. R. Schleyer (Ed.). Special issue on “Aromaticity”: Chem. Rev. 101 (5), 7–1566 (2001).Google Scholar

  • 1g

    , M. K. Cyranski, T. M. Krygowski, A. R. Katritzky, P. v. R. Schleyer. J. Org. Chem.67, 1333 (2002).CrossrefGoogle Scholar

  • 1h

    , G. Portella, J. Poater, M. Sola. J. Phys. Org. Chem.18, 785 (2005).CrossrefGoogle Scholar

  • 1i

    , A. Stanger. J. Org. Chem.71, 883 (2006).CrossrefGoogle Scholar

  • 1j

    , P. W. Fowler, M. Lillington, L. P. Olson. Pure Appl. Chem.79, 969 (2007).CrossrefGoogle Scholar

  • 1k

    T. M. Krygowski, M. K. Cyranski (Eds.). Aromaticity in Heterocyclic Compounds, Topics in Heterocyclic Chemistry series, Springer (2009).Google Scholar

  • 2

    E. Hückel. Z. Phys.76, 628 (1932).CrossrefGoogle Scholar

  • 3a

    , IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: (2006–) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins; “Hückel (4n + 2) rule”:.H02867.CrossrefGoogle Scholar

  • 3b

    , V. Kutzelnigg. J. Comput. Chem.28, 25 (2007).CrossrefGoogle Scholar

  • 3c

    , S. Sakai. J. Phys. Chem. A107, 9422 (2003).CrossrefGoogle Scholar

  • 4

    , IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: (2006–) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins; “aromaticity”:.A00442.CrossrefGoogle Scholar

  • 5a

    , E. Heilbronner. Tetrahedron Lett.5, 1923 (1964).CrossrefGoogle Scholar

  • 5b

    , R. Herges. Chem. Rev.106, 4820 (2006).CrossrefGoogle Scholar

  • 6

    , V. Maraval, R. Chauvin. Chem. Rev.106, 5317 (2006).CrossrefGoogle Scholar

  • 7

    , M. K. Cyranski. Chem. Rev.105, 3773 (2005).CrossrefGoogle Scholar

  • 8

    , Y. Mo, P. v. R. Schleyer. Chem.—Eur. J.12, 2009 (2006).CrossrefGoogle Scholar

  • 9

    , J. Aihara. J. Am. Chem. Soc.98, 2750 (1976).CrossrefGoogle Scholar

  • 10a

    I. Gutman, M. Milun, N. Trinajstic. Croat. Chem. Acta48, 87 (1976).Google Scholar

  • 10b

    , I. Gutman, M. Milun, N. Trinajstic. J. Am. Chem. Soc.99, 1692 (1977).CrossrefGoogle Scholar

  • 11a

    , P. v. R. Schleyer, F. Pulhlhofer. Org. Lett.4, 2873 (2002).CrossrefGoogle Scholar

  • 11b

    , M. K. Cyranski, S. T. Howard, M. L. Chodkiewicz. Chem. Commun. 2458 (2004).CrossrefGoogle Scholar

  • 11c

    , M. A. Dobrowolski, M. K. Cyranski, B. L. Merner, G. J. Bodwell, J. I. Wu, P. v. R. Schleyer. J. Org. Chem.73, 8001 (2008).CrossrefGoogle Scholar

  • 12

    , L. J. Schaad, B. A. Hess Jr. Chem. Rev.101, 1465 (2001).CrossrefGoogle Scholar

  • 13

    , R. Breslow, E. Mohacsi. J. Am. Chem. Soc.85, 431 (1963).CrossrefGoogle Scholar

  • 14

    , S. E. Wheeler, K. N. Houk, P. v. R. Schleyer, W. D. Allen. J. Am. Chem. Soc.131, 2547 (2009).CrossrefGoogle Scholar

  • 15a

    , P. George, M. Trachtman, C. W. Bock, A. M. Brett. Tetrahedron32, 317 (1976).CrossrefGoogle Scholar

  • 15b

    , P. George, M. Trachtman, A. M. Brett, C. W. Bock. J. Chem. Soc., Perkin Trans. 2 1036 (1977).CrossrefGoogle Scholar

  • 16

    , B. A. Hess Jr., L. J. Schaad. J. Am. Chem. Soc.105, 7500 (1983).CrossrefGoogle Scholar

  • 17

    , C. Zou, C. Lepetit, Y. Coppel, R. Chauvin. Pure Appl. Chem.78, 791 (2006).CrossrefGoogle Scholar

  • 18

    , J.-P. Malrieu, C. Lepetit, M. Gicquel, J.-L. Heully, P. W. Fowler, R. Chauvin. New J. Chem.31, 1918 (2007).CrossrefGoogle Scholar

  • 19

    As detailed in ref. [18], the first rule is based on the maximization of the accuracy of a limited expansion of the energy: the zero-order energy EA + EB must be as small as possible (Fig. 2). This implies that radical fragments must be avoided, that the overall charge should be located on the largest fragment, and that acyclic fragments with a maximum size difference must be prefered (e.g., a C2 fragment B and its remainder A). The second rule applies to double cuts, satisfying the first rule with the same minimum zeroth-order energy (e.g., such competing double cuts occur in fulvene). It aims at limiting the effects of the expansion truncation (to the second order) not taking into account remote acyclic delocalization beyond two neighboring double bonds. The neglected next-nearest neighbor interactions between bonds must thus be taken as similar as possible on both sides of the chemical ACEDC scheme. As cross-conjugation is much less efficient than linear conjugation, the numbers of linear C=C–C=C–C=C motifs must be as close as possible on both sides of the ACE chemical equation, even if the numbers of cross-conjugated C=C(C=C)=C motifs are significantly different.Google Scholar

  • 20

    , J.-P. Malrieu, M. Gicquel, P. W. Fowler, C. Lepetit, J.-L. Heully, R. Chauvin. J. Phys. Chem. A112, 13203 (2008).CrossrefGoogle Scholar

  • 21

    H. Sachs. Publ. Math. (Debrecen)11, 119 (1964).Google Scholar

  • 22a

    I. Gutman, M. Milun, N. Trinajstic. Croat. Chem. Acta49, 441 (1977).Google Scholar

  • 22b

    , J. Aihara. Bull. Chem. Soc. Jpn.53, 1163 (1980).CrossrefGoogle Scholar

  • 23

    , J. Cioslowski. Int. J. Quantum Chem.34, 417 (1986).CrossrefGoogle Scholar

  • 24

    , G. V. Boyd, N. Singer. Tetrahedron22, 3383 (1966).CrossrefGoogle Scholar

  • 25a

    , C. Godard, C. Lepetit, R. Chauvin. Chem. Commun. 1833 (2000).CrossrefGoogle Scholar

  • 25b

    , C. Lepetit, C. Godard, R. Chauvin. New J. Chem.25, 572 (2001).CrossrefGoogle Scholar

  • 26a

    , M. Eckert-Maksic, M. Vazdar, M. Barbatti, H. Lischka, Z. B. Maksic. J. Chem. Phys.125, 064310 (2006).CrossrefGoogle Scholar

  • 26b

    , P. B. Karadakov. J. Phys. Chem. A112, 7303 (2008).CrossrefGoogle Scholar

  • 27a

    , I. Gutman. Theor. Chim. Acta56, 89 (1980).CrossrefGoogle Scholar

  • 27b

    , J. Aihara. Bull. Chem. Soc. Jpn.77, 651 (2004).CrossrefGoogle Scholar

  • 27c

    , J. Aihara. Bull. Chem. Soc. Jpn.78, 443 (2005).CrossrefGoogle Scholar

  • 28a

    , R. Chauvin, C. Lepetit, P. W. Fowler, J.-P. Malrieu. Phys. Chem. Chem. Phys. (2010). In pressCrossrefGoogle Scholar

  • 28b

    , N. Mizoguchi. J. Math. Chem.7, 325 (1991).CrossrefGoogle Scholar

  • 29a

    , J. Aihara. J. Am. Chem. Soc.99, 2048 (1977).CrossrefGoogle Scholar

  • 29b

    , I. Gutman, S. Bosanac. Tetrahedron33, 1809 (1977).CrossrefGoogle Scholar

  • 29c

    , J. Aihara. J. Am. Chem. Soc.101, 5913 (1979).CrossrefGoogle Scholar

  • 29d

    , J. Aihara. J. Am. Chem. Soc.103, 5704 (1981).CrossrefGoogle Scholar

  • 29e

    , W. C. Herndon. J. Am. Chem. Soc.104, 3541 (1982).CrossrefGoogle Scholar

  • 29f

    , J. Aihara. Pure Appl. Chem.54, 1115 (1982).CrossrefGoogle Scholar

  • 29g

    , I. Gutman, W. C. Herndon. Chem. Phys. Lett.105, 281 (1984).CrossrefGoogle Scholar

  • 29h

    , N. Mizoguchi. Bull. Chem. Soc. Jpn.63, 765 (1990).CrossrefGoogle Scholar

  • 29i

    , J. Aihara. J. Am. Chem. Soc.128, 2873 (2006).CrossrefGoogle Scholar

  • 29j

    , J. Aihara. J. Phys. Org. Chem.21, 79 (2008).CrossrefGoogle Scholar

  • 30

    C. Lepetit, P. Lacroix, V. Peyrou, C. Saccavini, R. Chauvin. J. Comput. Meth. Sci. Eng.4, 569 (2004).Google Scholar

  • 31

    C. Bergé. In The Theory of Graph and its Applications, p. 27, John Wiley, New York (1962).Google Scholar

  • 32a

    , A. Soncini, P. W. Fowler, C. Lepetit, R. Chauvin. Phys. Chem. Chem. Phys.10, 957 (2008).CrossrefGoogle Scholar

  • 32b

    , S. Pelloni, P. Lazzereti. Chem. Phys.356, 153 (2009).CrossrefGoogle Scholar

  • 33a

    , J. Aihara. J. Am. Chem. Soc.117, 4130 (1995).CrossrefGoogle Scholar

  • 33b

    , J. Aihara. J Chem. Soc., Perkin Trans. 2 2185 (1996).CrossrefGoogle Scholar

  • 34a

    J. C. Lepetit, B. Silvi, R. Chauvin. J. Phys. Chem. A107, 464 (2003).Google Scholar

  • 34b

    , C. Lepetit, V. Peyrou, R. Chauvin. Chem. Phys. Phys. Chem.6, 303 (2004).CrossrefGoogle Scholar

  • 34c

    R. Chauvin, C. Lepetit. In Acetylene Chemistry. Chemistry, Biology and Material Sciences, Chap. 1, pp. 1–50, F. Diederich, P. J. Stang, R. R. Tykwinski (Eds.), John Wiley, Weinheim (2005).Google Scholar

  • 35

    , A. R. Katritzky, P. Barczynski, G. Musumarra, D. Pisano, M. Szafran. J. Am. Chem. Soc.111, 7 (1989).CrossrefGoogle Scholar

  • 36a

    , J.-M. Ducere, C. Lepetit, P. G. Lacroix, J.-L. Heully, R. Chauvin. Chem. Mater.14, 3332 (2002).CrossrefGoogle Scholar

  • 36b

    C. Lepetit, P. G. Lacroix, V. Peyrou, C. Saccavini, R. Chauvin. In Computational Aspects of Electric Polarizability Calculations: Atoms, Molecules and Clusters, G. Maroulis, (Ed.), pp. 335–354, IOS Press, Amsterdam (2006).Google Scholar

  • 37a

    , Y. Kuwatani, N. Watanabe, I. Ueda. Tetrahedron Lett.36, 119 (1995).CrossrefGoogle Scholar

  • 37b

    , R. Suzuki, H. Tsukuda, N. Watanabe, Y. Kuwatani, I. Ueda. Tetrahedron54, 2477 (1998).CrossrefGoogle Scholar

  • 38

    , C. Saccavini, C. Tedeschi, L. Maurette, C. Sui-Seng, C. Zou, M. Soleilhavoup, L. Vendier, R. Chauvin. Chem.—Eur. J.13, 4895 (2007).CrossrefGoogle Scholar

  • 39

    , C. Saccavini, C. Sui-Seng, L. Maurette, C. Lepetit, S. Soula, C. Zou, B. Donnadieu, R. Chauvin. Chem.—Eur. J.13, 4914 (2007).CrossrefGoogle Scholar

  • 40a

    , M. Barzoukas, M. Blanchard-Desce. J. Chem. Phys.113, 3951 (2000).CrossrefGoogle Scholar

  • 40b

    , M. Albota, D. Beljonne, J.-L. Brédas, J. E. Ehrlich, J.-Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Röckel, M. Rumi, G. Subramaniam, W. W. Webb, X.-L. Wu, C. Xu. Science281, 1653 (1998).CrossrefGoogle Scholar

  • 40c

    , B. A. Reinhardt, L. L. Brott, S. J. Clarson, A. G. Dillard, J. C. Bhatt, R. Kannan, L. Yuan, G. S. He, P. N. Prasad. Chem. Mater.10, 1863 (1998).CrossrefGoogle Scholar

  • 40d

    , M. Rumi, J. E. Ehrlich, A. A. Heikal, J. W. Perry, S. Barlow, Z. Hu, D. McCord-Maughon, T. C. Parker, H. Roickel, S. Thayumanavan, S. R. Marder, D. Beljonne, J.-L. Brédas. J. Am. Chem. Soc.122, 9500 (2000).CrossrefGoogle Scholar

  • 40e

    , L. Ventelon, S. Charier, L. Moreaux, J. Mertz, M. Blanchard-Desce. Angew. Chem., Int. Ed.40, 2098 (2001).CrossrefGoogle Scholar

  • 40f

    , O. Mongin, L. Porrès, M. Charlot, C. Katan, M. Blanchard-Desce. Chem.—Eur. J.13, 1481 (2007).CrossrefGoogle Scholar

  • 41

    , L. Leroyer, C. Zou, V. Maraval, R. Chauvin. Comptes Rendus Chim.12, 412 (2009).CrossrefGoogle Scholar

  • 42

    , C. Zou, C. Duhayon, V. Maraval, R. Chauvin. Angew. Chem., Int. Ed.46, 4337 (2007).CrossrefGoogle Scholar

  • 43

    L. Leroyer, V. Maraval, M. Gicquel, C. Lepetit, R. Chauvin. Dialkynylbutatrienes and carbo-quinoid motifs, ISNA 13 poster no. AE028, Luxembourg (2009).Google Scholar

  • 44

    M. Vilhelmsen, M. B. Nielsen, C. Lepetit, R. Chauvin. Carbo-benzoquino-bis(dithiafulvalene): A theoretical study of an extended TTF target, ISNA 13 poster no. AE060, Luxembourg (2009).Google Scholar

  • 45

    C. Lepetit, M. Gicquel, R. Chauvin. Unpublished results.Google Scholar

  • 46

    V. Maraval, L. Leroyer, D. Kandaskalov, C. Lepetit, R. Chauvin. Quadrupolar carbo-benzenic chromophores, ISNA 13 poster no. AE031, Luxembourg (2009).Google Scholar

  • 47

    , C. Lepetit, M. B. Nielsen, F. Diederich, R. Chauvin. Chem.—Eur. J.9, 5056 (2003).CrossrefGoogle Scholar

  • 48a

    , H. Cartwright. J. Chem. Educ.63, 984 (1986).CrossrefGoogle Scholar

  • 48b

    J. P. Launay. Private communication.Google Scholar

  • 48c

    L. Patsenker. Private communication.Google Scholar

  • 49

    , J. M. Kauffman, C. J. Kelley, A. Ghiorghis, E. Neister, L. Armstrong. Laser Chem.8, 335 (1988).CrossrefGoogle Scholar

  • 50

    , H. Shinohara, M. Kotani. Bull. Chem. Soc. Jpn.53, 3171 (1980).CrossrefGoogle Scholar

  • 51a

    , J. J. C. Mulder. J. Am. Chem. Soc.99, 5177 (1977).CrossrefGoogle Scholar

  • 51b

    , R. P. Johnson, K. J. Daoust. J. Am. Chem. Soc.118, 7381 (1996).CrossrefGoogle Scholar

  • 51c

    , R. A. Havenith, J. H. Vanlenthe, L. W. Jenneskens. Int. J. Quantum Chem.85, 52 (2001).CrossrefGoogle Scholar

  • 52

    , J. Aihara. Bull. Chem. Soc. Jpn.51, 1788 (1978).CrossrefGoogle Scholar

  • 53a

    , M. Randic. Chem. Rev.103, 3449 (2003).CrossrefGoogle Scholar

  • 53b

    L. Tarko. ARKIVOC 24 (2008).Google Scholar

  • 54

    L. Leroyer. Ph.D. Thesis, 19 March 2010, University Paul Sabatier, Toulouse, France.Google Scholar

About the article

Published Online: 2010-03-26

Published in Print: 2010-03-26


Citation Information: Pure and Applied Chemistry, Volume 82, Issue 4, Pages 769–800, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-09-11-07.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Dymytrii Listunov, Carine Duhayon, Albert Poater, Serge Mazères, Alix Saquet, Valérie Maraval, and Remi Chauvin
Chemistry - A European Journal, 2018
[2]
Jun-ichi Aihara
Bulletin of the Chemical Society of Japan, 2018, Volume 91, Number 2, Page 274
[3]
Chongwei Zhu, Tsai-Hui Wang, Chien-Jhang Su, Shern-Long Lee, Arnaud Rives, Carine Duhayon, Brice Kauffmann, Valérie Maraval, Chun-hsien Chen, Hsiu-Fu Hsu, and Remi Chauvin
Chem. Commun., 2017, Volume 53, Number 43, Page 5902
[4]
Chongwei Zhu, Carine Duhayon, Daniel Romero-Borja, José-Luis Maldonado, Gabriel Ramos-Ortíz, Alix Saquet, Valerie Maraval, and Remi Chauvin
New J. Chem., 2017, Volume 41, Number 10, Page 3908
[5]
Corentin Poidevin, Jean-Paul Malrieu, Georges Trinquier, Christine Lepetit, Faycal Allouti, M. Esmail Alikhani, and Remi Chauvin
Chemistry - A European Journal, 2016, Volume 22, Number 15, Page 5295
[6]
Kévin Cocq, Christine Lepetit, Valérie Maraval, and Remi Chauvin
Chem. Soc. Rev., 2015, Volume 44, Number 18, Page 6535
[7]
Przemyslaw Gawel, Yi-Lin Wu, Aaron D. Finke, Nils Trapp, Michal Zalibera, Corinne Boudon, Jean-Paul Gisselbrecht, W. Bernd Schweizer, Georg Gescheidt, and François Diederich
Chemistry - A European Journal, 2015, Volume 21, Number 16, Page 6215
[8]
Zhihai Li, Manuel Smeu, Arnaud Rives, Valérie Maraval, Remi Chauvin, Mark A. Ratner, and Eric Borguet
Nature Communications, 2015, Volume 6, Page 6321
[9]
Kévin Cocq, Valérie Maraval, Nathalie Saffon-Merceron, and Remi Chauvin
The Chemical Record, 2015, Volume 15, Number 1, Page 347
[10]
Kévin Cocq, Valérie Maraval, Nathalie Saffon-Merceron, Alix Saquet, Corentin Poidevin, Christine Lepetit, and Remi Chauvin
Angewandte Chemie, 2015, Volume 127, Number 9, Page 2741
[11]
Kévin Cocq, Valérie Maraval, Nathalie Saffon-Merceron, Alix Saquet, Corentin Poidevin, Christine Lepetit, and Remi Chauvin
Angewandte Chemie International Edition, 2015, Volume 54, Number 9, Page 2703
[12]
Arnaud Rives, Iaroslav Baglai, Cécile Barthes, Valérie Maraval, Nathalie Saffon-Merceron, Alix Saquet, Zoia Voitenko, Yulian Volovenko, and Remi Chauvin
Chem. Sci., 2015, Volume 6, Number 2, Page 1139
[13]
Tadeusz M. Krygowski, Halina Szatylowicz, Olga A. Stasyuk, Justyna Dominikowska, and Marcin Palusiak
Chemical Reviews, 2014, Volume 114, Number 12, Page 6383
[14]
Arnaud Rives, Valérie Maraval, Nathalie Saffon-Merceron, and Remi Chauvin
Chemistry - A European Journal, 2014, Volume 20, Number 2, Page 483
[15]
Remi Chauvin and Christine Lepetit
Physical Chemistry Chemical Physics, 2013, Volume 15, Number 11, Page 3855
[16]
Arnaud Rives, Valérie Maraval, Nathalie Saffon-Merceron, and Remi Chauvin
Chemistry - A European Journal, 2012, Volume 18, Number 46, Page 14702
[17]
Arnaud Rives, Iaroslav Baglai, Volodymyr Malytskyi, Valérie Maraval, Nathalie Saffon-Merceron, Zoia Voitenko, and Remi Chauvin
Chemical Communications, 2012, Volume 48, Number 70, Page 8763
[18]
Patrick Marks and Mindy Levine
Journal of Chemical Education, 2012, Volume 89, Number 9, Page 1186
[19]
Zoia V. Voitenko, Oleksandr I. Halaev, Volodymyr P. Samoylenko, Sergey V. Kolotilov, Christine Lepetit, Bruno Donnadieu, and Remi Chauvin
Tetrahedron, 2010, Volume 66, Number 41, Page 8214
[20]
Yi-Lin Wu, Francesca Tancini, W. Bernd Schweizer, Daniela Paunescu, Corinne Boudon, Jean-Paul Gisselbrecht, Peter D. Jarowski, Enrico Dalcanale, and François Diederich
Chemistry - An Asian Journal, 2012, Volume 7, Number 6, Page 1185
[21]
Léo Leroyer, Valérie Maraval, and Remi Chauvin
Chemical Reviews, 2012, Volume 112, Number 3, Page 1310
[22]
Léo Leroyer, Christine Lepetit, Arnaud Rives, Valérie Maraval, Nathalie Saffon-Merceron, Dmytro Kandaskalov, David Kieffer, and Remi Chauvin
Chemistry - A European Journal, 2012, Volume 18, Number 11, Page 3226
[23]
Valérie Maraval, Léo Leroyer, Aya Harano, Cécile Barthes, Alix Saquet, Carine Duhayon, Teruo Shinmyozu, and Remi Chauvin
Chemistry - A European Journal, 2011, Volume 17, Number 18, Page 5086
[24]
Arkadiusz Ciesielski, Tadeusz M. Krygowski, Michał K. Cyrański, and Alexandru T. Balaban
Phys. Chem. Chem. Phys., 2011, Volume 13, Number 9, Page 3737
[25]
Remi Chauvin, Christine Lepetit, Valerie Maraval, and Leo Leroyer
ChemInform, 2010, Volume 41, Number 39, Page no
[26]
Remi Chauvin, Christine Lepetit, Patrick W. Fowler, and Jean-Paul Malrieu
Physical Chemistry Chemical Physics, 2010, Volume 12, Number 20, Page 5295

Comments (0)

Please log in or register to comment.
Log in