Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2016: 2.626
5-year IMPACT FACTOR: 3.210

CiteScore 2016: 2.45

SCImago Journal Rank (SJR) 2016: 0.972
Source Normalized Impact per Paper (SNIP) 2016: 1.049

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 83, Issue 1 (Nov 2010)

Issues

Toward carbon dioxide capture using nanoporous materials

Deanna M. D'Alessandro
  • Corresponding author
  • School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas McDonald
  • Corresponding author
  • Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-11-19 | DOI: https://doi.org/10.1351/PAC-CON-10-09-18

The development of more efficient processes for CO2 capture from the flue streams of power plants is considered a key to the reduction of greenhouse gas emissions implicated in global warming. Indeed, several U.S. and international climate change initiatives have identified the urgent need for improved materials and methods for CO2 capture. Conventional CO2 capture processes employed in power plants world-wide are typically postcombustion “wet scrubbing” methods involving the absorption of CO2 by amine-containing solvents such as methanolamine (MEA). These present several disadvantages, including the considerable heat required in regeneration of the solvent and the necessary use of inhibitors for corrosion control, which lead to reduced efficiencies and increased costs for electricity production. This perspective article seeks to highlight the most recent advances in new materials for CO2 capture from power plant flue streams, with particular emphasis on the rapidly expanding field of metal–organic frameworks. Ultimately, the development of new classes of efficient, cost-effective, and industrially viable capture materials for application in carbon capture and storage (CCS) systems offers an immense opportunity to reduce atmospheric emissions of greenhouse gases on a national and international scale.

Keywords: adsorbent materials; carbon dioxide capture; gas separations; metal–organic frameworks; porous coordination polymers

References

  • 1

    , A. P. Sokolov, P. H. Stone, C. E. Forest, R. Prinn, M. C. Sarofim, M. Webster, S. Paltsev, C. A. Schlosser, D. Kicklighter, S. Dutkiewicz, J. M. Reilly, C. Wang, B. Felzer, H. D. Jacoby. J. Climate 22, 5175 (2009).CrossrefGoogle Scholar

  • 2

    A. Neftel, H. Friedli, E. Moor, H. Lötscher, H. Oeschger, U. Siegenthaler, B. Stauffer. In Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy (1994).Google Scholar

  • 3

    R. F. Keeling, S. C. Piper, A. F. Bollenbacher, S. J. Walker. In Atmospheric CO2values derived from in situ air samples collected at Manua Loa, Hawaii, USA, Scripps Institution of Oceanography, La Jolla, CA (2009).Google Scholar

  • 4

    U.S. Energy Information Administration. International Energy Outlook 2010, <http:/www.eia.doe.gov/oiaf/ieo/> (2010).Google Scholar

  • 5

    B. Metz, O. Davidson, H. de Coninck, M. Loos, L. Meyer. IPCC Special Report on Carbon Dioxide Capture and Storage. Cambridge University Press, Cambridge, UK (2005).Google Scholar

  • 6

    United Nations Framework Convention on Climate Change. <http:unfccc.int/2860.php>.Google Scholar

  • 7

    Carbon Sequestration Leadership Forum. <http://www.cslforum.org>.Google Scholar

  • 8

    Global Climate Change Initiative. <http://www.state.gov/g/oes/rls/fs/2002/12956.htm>.Google Scholar

  • 9

    FutureGen Alliance, Inc. <http://www.futuregenalliance.org>.Google Scholar

  • 10

    , C. E. Powell, G. G. Qiao. J. Membr. Sci. 279, 1 (2006).CrossrefGoogle Scholar

  • 11

    , J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R. D. Srivastava. Int. J. Greenhouse Gas Control 2, 9 (2008).CrossrefGoogle Scholar

  • 12

    , S. Freguia, G. T. Rochelle. AIChE J. 49, 1676 (2003).CrossrefGoogle Scholar

  • 13

    , P. D. Vaidya, E. Y. Kenig. Chem. Eng. Technol. 30, 1467 (2007).CrossrefGoogle Scholar

  • 14

    , P. H. M. Feron, C. A. Hendriks. Oil Gas Sci. Technol. 60, 451 (2005).CrossrefGoogle Scholar

  • 15

    , L. I. Eide, D. W. Bailey. Oil Gas Sci. Technol. 60, 475 (2005).CrossrefGoogle Scholar

  • 16

    , M. M. Abu-Khader. Energy Sources, Part A 28, 1261 (2006).CrossrefGoogle Scholar

  • 17

    , D. M. D’Alessandro, B. Smit, J. R. Long. Angew. Chem., Int. Ed. 49, 6058 (2010).CrossrefGoogle Scholar

  • 18

    S. Shackley, C. Gough (Eds.). Carbon Capture and its Storage: An Integrated Assessment, Ashgate, UK (2006).Google Scholar

  • 19

    , X. Xu, C. Song, B. G. Miller, A. W. Scaroni. Fuel Process. Technol. 86, 1457 (2005).CrossrefGoogle Scholar

  • 20

    , J. C. Hicks, J. H. Drese, D. J. Fauth, M. L. Gray, G. Qi, C. W. Jones. J. Am. Chem. Soc. 130, 2902 (2008).CrossrefGoogle Scholar

  • 21

    , O. Leal, C. Bolivar, C. Ovalles, J. Garcia, Y. Espidel. Inorg. Chim. Acta 240, 183 (1995).CrossrefGoogle Scholar

  • 22

    R. V. Sirwardane. 6,908,497 B1 (2005).Google Scholar

  • 23

    , P. J. E. Harlick, F. H. Tezel. Microporous Mesoporous Mater. 76, 71 (2004).CrossrefGoogle Scholar

  • 24

    , G. Maurin, P. L. Llewellyn, R. G. Bell. J. Phys. Chem. B 109, 16084 (2005).CrossrefGoogle Scholar

  • 25

    , R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O. M. Yaghi. Science 319, 939 (2008).CrossrefGoogle Scholar

  • 26

    , K. S. Park, Z. Ni, A. P. Cote, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe, O. M. Yaghi. Proc. Nat. Acad. Sci. USA 103, 10186 (2006).CrossrefGoogle Scholar

  • 27

    , H. Hayashi, A. P. Cote, H. Furukawa, M. O’Keeffe, O. M. Yaghi. Nat. Mater. 6, 501 (2007).CrossrefGoogle Scholar

  • 28

    X.-J. Hou, H. Li. J. Phys. Chem. C 114, 13501 (2010).Google Scholar

  • 29

    , W. Morris, B. Leung, H. Furukawa, O. K. Yaghi, N. He, H. Hayashi, Y. Houndonougbo, M. Asta, B. B. Laird, O. M. Yaghi. J. Am. Chem. Soc. 132, 11006 (2010).CrossrefGoogle Scholar

  • 30

    , L. Schlapbach, A. Züttel. Nature 414, 353 (2001).CrossrefGoogle Scholar

  • 31

    , O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi, J. Kim. Nature 423, 705 (2003).CrossrefGoogle Scholar

  • 32

    , U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre. J. Mater. Chem. 16, 626 (2006).CrossrefGoogle Scholar

  • 33

    , N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe, O. M. Yaghi. Science 300, 1127 (2003).CrossrefGoogle Scholar

  • 34

    , D. J. Collins, H.-C. Zhou. J. Mater. Chem. 17, 3154 (2007).CrossrefGoogle Scholar

  • 35

    L. J. Murray, M. Dincă, J. Long. Chem. Soc. Rev. 39, 1294 (2008).Google Scholar

  • 36

    Z. Xiang, D. Cao, X. Shao, W. Wang, J. Zhang, W. Wu. Chem. Eng. Sci. 65, 3140 (2010).Google Scholar

  • 37

    , O. K. Farha, J. T. Hupp. Acc. Chem. Res. 43, 1166 (2010).CrossrefGoogle Scholar

  • 38

    , K. Sumida, S. Horike, S. S. Kaye, Z. R. Herm, W. L. Queen, C. M. Brown, F. Grandjean, G. J. Long, A. Dailly, J. R. Long. Chem. Sci. 1, 184 (2010).CrossrefGoogle Scholar

  • 39

    , A. R. Millward, O. M. Yaghi. J. Am. Chem. Soc. 127, 17998 (2005).CrossrefGoogle Scholar

  • 40

    , H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O’Keeffe, J. Kim, O. Yaghi. Science 329, 424 (2010).CrossrefGoogle Scholar

  • 41

    , N. A. Ramsahye, G. Maurin, S. Bourrelly, P. L. Llewellyn, C. Serre, T. Loiseau, T. Devic, G. Ferey. J. Phys. Chem. C 112, 514 (2008).CrossrefGoogle Scholar

  • 42

    , C. Serre, S. Bourrelly, A. Vimont, N. A. Ramsahye, G. Maurin, P. L. Llewellyn, M. Daturi, Y. Filinchuk, O. Leynaud, P. Barnes, G. Ferey. Adv. Mater. 19, 2246 (2007).CrossrefGoogle Scholar

  • 43

    , N. A. Ramsahye, G. Maurin, S. Bourrelly, P. L. Llewellyn, T. Loiseau, C. Serre, G. Ferey. Chem. Commun. 3261 (2007).CrossrefGoogle Scholar

  • 44

    , N. A. Ramsahye, G. Maurin, S. Bourrelly, P. Llewellyn, T. Loiseau, G. Ferey. Phys. Chem. Chem. Phys. 9, 1059 (2007).CrossrefGoogle Scholar

  • 45

    , P. L. Llewellyn, S. Bourrrelly, C. Serre, Y. Filinchuk, G. Ferey. Angew. Chem., Int. Ed. 45, 7751 (2006).CrossrefGoogle Scholar

  • 46

    , A. R. Millward, O. M. Yaghi. J. Am. Chem. Soc. 127, 17998 (2005).CrossrefGoogle Scholar

  • 47

    , A. Demessence, D. M. D’Alessandro, M. L. Foo, J. R. Long. J. Am. Chem. Soc. 131, 8784 (2009).CrossrefGoogle Scholar

  • 48

    , J.-M. Gu, T.-H. Kwon, J.-H. Park, S. Huh. Dalton Trans. 39, 5608 (2010).CrossrefGoogle Scholar

  • 49

    , J. An, N. Rosi. J. Am. Chem. Soc. 132, 5578 (2010).CrossrefGoogle Scholar

  • 50

    , A. Torrisi, R. G. Bell, C. Mellot-Draznieks. Cryst. Growth Des. 10, 2839 (2010).CrossrefGoogle Scholar

  • 51

    , R. Babarao, J. W. Jiang. Ind. Eng. Chem. Res. (2010).CrossrefGoogle Scholar

  • 52

    , J. Lan, D. Cao, W. Wang, B. Smit. ACS Nano 4, 4225 (2010).CrossrefGoogle Scholar

  • 53

    , R. Babarao, J. W. Jiang. Energy Environ. Sci. 2, 1088 (2009).CrossrefGoogle Scholar

  • 54

    , R. Babarao, M. Eddaoudi, J. W. Jiang. Langmuir 26, 11196 (2010).CrossrefGoogle Scholar

  • 55

    , J. Liu, Y. Wang, A. I. Benin, P. Jakubezak, R. R. Willis, M. D. LeVan. Langmuir 26, 14301 (2010).CrossrefGoogle Scholar

About the article

Published Online: 2010-11-19

Published in Print: 2010-11-19


Citation Information: Pure and Applied Chemistry, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-CON-10-09-18.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Naef A.A. Qasem, Najam U. Qadir, Rached Ben-Mansour, and Syed A.M. Said
Journal of CO2 Utilization, 2017, Volume 22, Page 238
[2]
Dina Ahmed, Gamal El-Hiti, Emad Yousif, Ayad Hameed, and Mustafa Abdalla
Polymers, 2017, Volume 9, Number 8, Page 336
[3]
Bolisetty Sreenivasulu, Inkollu Sreedhar, Pathi Suresh, and Kondapuram Vijaya Raghavan
Environmental Science & Technology, 2015, Volume 49, Number 21, Page 12641
[4]
Eoghan P. Dillon, Enrico Andreoli, Laurie Cullum, and Andrew R. Barron
Journal of Experimental Nanoscience, 2015, Volume 10, Number 10, Page 746
[5]
Yuan Chen, Jingming Zhang, Jing Li, and Jenny V. Lockard
The Journal of Physical Chemistry C, 2013, Volume 117, Number 39, Page 20068
[6]
Ja-Min Gu, Wan-Seok Kim, Yong-Kyung Hwang, and Seong Huh
Carbon, 2013, Volume 56, Page 208
[7]
Lei Liu, Pei-Zhou Li, Liangliang Zhu, Ruqiang Zou, and Yanli Zhao
Polymer, 2013, Volume 54, Number 2, Page 596
[8]
Mainak Majumder, Phillip Sheath, James I. Mardel, Timothy G. Harvey, Aaron W. Thornton, Amanda Gonzago, Danielle F. Kennedy, Ian Madsen, James W. Taylor, David R. Turner, and Matthew R. Hill
Chemistry of Materials, 2012, Volume 24, Number 24, Page 4647
[9]
R. Sabouni, H. Kazemian, and S. Rohani
Chemical Engineering & Technology, 2012, Volume 35, Number 6, Page 1085
[10]
Hong-Bo Wang, Philip G. Jessop, and Guojun Liu
ACS Macro Letters, 2012, Volume 1, Number 8, Page 944
[11]
Zhijuan Zhang, Jinchen Liu, Zhong Li, and Jing Li
Dalton Transactions, 2012, Volume 41, Number 14, Page 4232
[12]
Weigang Lu, Daqiang Yuan, Julian Sculley, Dan Zhao, Rajamani Krishna, and Hong-Cai Zhou
Journal of the American Chemical Society, 2011, Volume 133, Number 45, Page 18126
[13]
Nicholas M. Rue, Junling Sun, and Ralf Warmuth
Israel Journal of Chemistry, 2011, Volume 51, Number 7, Page 743

Comments (0)

Please log in or register to comment.
Log in