Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2016: 2.626
5-year IMPACT FACTOR: 3.210

CiteScore 2016: 2.45

SCImago Journal Rank (SJR) 2016: 0.972
Source Normalized Impact per Paper (SNIP) 2016: 1.049

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 83, Issue 10 (Sep 2011)

Issues

Extension of ThermoML: The IUPAC standard for thermodynamic data communications (IUPAC Recommendations 2011)

Michael Frenkel
  • Corresponding author
  • Thermophysical Properties Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert D. Chirico
  • Corresponding author
  • Thermophysical Properties Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimir Diky
  • Corresponding author
  • Thermophysical Properties Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Paul L. Brown / John H. Dymond / Robert N. Goldberg
  • Corresponding author
  • Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anthony R. H. Goodwin / Heiko Heerklotz
  • Corresponding author
  • Department of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Erich Königsberger
  • Corresponding author
  • Faculty of Science and Engineering, School of Chemical and Mathematical Sciences, Murdoch University, Murdoch, WA 6150, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ John E. Ladbury / Kenneth N. Marsh
  • Corresponding author
  • Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ David P. Remeta
  • Corresponding author
  • Thermophysical Properties Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
  • Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Stephen E. Stein
  • Corresponding author
  • Thermophysical Properties Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
  • Chemical and Biochemical Reference Data Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ William A. Wakeham
  • Corresponding author
  • Thermophysical Properties Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
  • School of Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Peter A. Williams
  • Corresponding author
  • Thermophysical Properties Division, National Institute of Standards and Technology, Boulder, CO 80305, USA
  • School of Natural Sciences, University of Western Sydney, Penrith South, NSW 1797, Australia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-09-07 | DOI: https://doi.org/10.1351/PAC-REC-11-05-01

ThermoML is an XML-based approach for storage and exchange of experimental, predicted, and critically evaluated thermophysical and thermochemical property data. Extensions to the ThermoML schema for the representation of speciation, complex equilibria, and properties of biomaterials are described. The texts of 14 data files illustrating the new extensions are provided as Supplementary Information together with the complete text of the updated ThermoML schema.

Keywords: communications; data; standardization; standards; thermochemistry; thermodynamics; ThermoML

Project Year: 2007, Project Code: 2007-039-1-024

References

  • 1

    , M. Frenkel. Pure Appl. Chem. 77, 1349 (2005).CrossrefGoogle Scholar

  • 2

    , M. Frenkel. J. Chem. Eng. Data 54, 2411 (2009).CrossrefGoogle Scholar

  • 3

    , M. Frenkel. J. Chem. Thermodyn. 39, 169 (2007).CrossrefGoogle Scholar

  • 4

    , M. Frenkel. Comp. Chem. Eng. 35, 393 (2011).CrossrefGoogle Scholar

  • 5

    R. C. Wilhoit, K. N. Marsh. COdataSTAndardThermodynamics. Rules for Preparing COSTAT Message for Transmitting Thermodynamic Data, Report to CODATA Task Group on Geothermodynamic Data and Chemical Thermodynamic Tables, Paris (1987).Google Scholar

  • 6

    <http://www-i5.informatik.rwth-aachen.de/lehrstuhl/projects/gco/>. Web page contact: Alexander Kuckelberg (kuckelberg@informatik.rwth-aachen.de).Google Scholar

  • 7

    IUPAC project 024/1/99, "Standardization of physicochemical property electronic data files", H. V. Kehiaian <http://www.iupac.org/web/ins/024-1-99>.Google Scholar

  • 8

    A. K. Dewan, D. L. Embry, T. J. Willman. DIPPR/AIChE Project 991 – Thermophysical Property Data Exchange, Book of Abstracts of the 14thSymposium on Thermophysical Properties, p. 169, Boulder, CO (2000).Google Scholar

  • 9

    IUPAC project 2002-055-3-024, "XML-based IUPAC Standard for Experimental and Critically Evaluated Thermodynamic Property Data Storage and Capture", M. Frenkel <http://www.iupac.org/web/ins/2002-055-3-024>.Google Scholar

  • 10

    IUPAC Committee on Printed and Electronic Publication, CPEP <http://www.iupac.org/web/ins/024>.Google Scholar

  • 11

    C. Finkelstein, P. Aiken. Building Corporate Portals with XML, McGraw-Hill, New York (1999).Google Scholar

  • 12

    IBM XML Toolkit, <http://www-03.ibm.com/systems/z/os/zos/tools/xml/>.Google Scholar

  • 13

    Microsoft XML Downloads, <http://msdn.microsoft.com/en-us/data/bb190600.aspx>.Google Scholar

  • 14

    ThermoML - namespace for the XML-based IUPAC Standard for Thermodynamic Property Data <http://www.iupac.org/namespaces/ThermoML>.Google Scholar

  • 15

    , M. Frenkel, R. D. Chirico, V. V. Diky, K. N. Marsh, J. H. Dymond, W. A. Wakeham, S. E. Stein, E. Königsberger, A. R. H. Goodwin. Pure Appl. Chem. 78, 541 (2006).CrossrefGoogle Scholar

  • 16

    , M. Frenkel, R. D. Chirico, V. V. Diky, Q. Dong, S. Frenkel, P. R. Franchois, D. L. Embry, T. L. Teague, K. N. Marsh, R. C. Wilhoit. J. Chem. Eng. Data 48, 2 (2003).CrossrefGoogle Scholar

  • 17

    , R. D. Chirico, M. Frenkel, V. V. Diky, K. N. Marsh, R. C. Wilhoit. J. Chem. Eng. Data 48, 1344 (2003).CrossrefGoogle Scholar

  • 18

    , M. Frenkel, R. D. Chirico, V. V. Diky, K. N. Marsh, J. H. Dymond, W. A. Wakeham. J. Chem. Eng. Data 49, 381 (2004).CrossrefGoogle Scholar

  • 19

    , M. Frenkel, R. D. Chirico, V. Diky, C. Muzny, Q. Dong, K. N. Marsh, J. H. Dymond, W. A. Wakeham, S. E. Stein, E. Königsberger, A. R. H. Goodwin, J. W. Magee, M. Thijssen, W. M. Haynes, S. Watanasiri, M. Satyro, M. Schmidt, A. I. Johns, G. R. Hardin. J. Chem. Inf. Model. 46, 2487 (2006).CrossrefGoogle Scholar

  • 20a

    , P. T. Cummings, T. de Loos, J. P. O’Connell, W. M. Haynes, D. G. Friend, A. Mandelis, K. N. Marsh, P. L. Brown, R. D. Chirico, A. R. H. Goodwin, J. Wu, R. D. Weir, J. P. M. Trusler, A. Pádua, V. Rives, C. Schick, S. Vyazovkin, L. D. Hansen. Fluid Phase Equilibr. 276, 165 (2009).CrossrefGoogle Scholar

  • 20b

    P. T. Cummings, T. de Loos, J. P. O’Connell, W. M. Haynes, D. G. Friend, A. Mandelis, K. N. Marsh, P. L. Brown, R. D. Chirico, A. R. H. Goodwin, J. Wu, R. D. Weir, J. P. M. Trusler, A. Pádua, V. Rives, C. Schick, S. Vyazovkin, L. D. Hansen. Int. J. Thermophys. 30, 371 (2009).Google Scholar

  • 20c

    , P. T. Cummings, T. de Loos, J. P. O’Connell, W. M. Haynes, D. G. Friend, A. Mandelis, K. N. Marsh, P. L. Brown, R. D. Chirico, A. R. H. Goodwin, J. Wu, R. D. Weir, J. P. M. Trusler, A. Pádua, V. Rives, C. Schick, S. Vyazovkin, L. D. Hansen. J. Chem. Eng. Data 54, 2 (2009).CrossrefGoogle Scholar

  • 20d

    P. T. Cummings, T. de Loos, J. P. O’Connell, W. M. Haynes, D. G. Friend, A. Mandelis, K. N. Marsh, P. L. Brown, R. D. Chirico, A. R. H. Goodwin, J. Wu, R. D. Weir, J. P. M. Trusler, A. Pádua, V. Rives, C. Schick, S. Vyazovkin, L. D. Hansen. J. Chem. Thermodyn. 41, 575 (2009).Google Scholar

  • 20e

    P. T. Cummings, T. de Loos, J. P. O’Connell, W. M. Haynes, D. G. Friend, A. Mandelis, K. N. Marsh, P. L. Brown, R. D. Chirico, A. R. H. Goodwin, J. Wu, R. D. Weir, J. P. M. Trusler, A. Pádua, V. Rives, C. Schick, S. Vyazovkin, L. D. Hansen. Thermochim. Acta 484, vii (2008).Google Scholar

  • 21

    ThermoML Web Archive, <http://trc.nist.gov/ThermoML.html>.Google Scholar

  • 22

    IUPAC project 2007-039-1-024, "Extension of ThermoML: The IUPAC Standard for Thermodynamic Data Communications", M. Frankel <http://www.iupac.org/web/ins/2007-039-1-024>.Google Scholar

  • 23

    , R. D. Chirico, M. Frenkel, V. V. Diky, R. N. Goldberg, H. Heerklotz, J. E. Ladbury, D. P. Remeta, J. H. Dymond, A. R. H. Goodwin, K. N. Marsh, W. A. Wakeham. J. Chem. Eng. Data 55, 1564 (2010).CrossrefGoogle Scholar

  • 24

    , M. Frenkel, V. Diky, R. D. Chirico, R. N. Goldberg, H. Heerklotz, J. E. Ladbury, D. P. Remeta, J. H. Dymond, A. R. H. Goodwin, K. N. Marsh, W. A. Wakeham, S. E. Stein, P. L. Brown, E. Königsberger, P. A. Williams. J. Chem. Eng. Data 56, 307 (2011).CrossrefGoogle Scholar

  • 25

    Guide to the Expression of Uncertainty in Measurement (International Organization for Standardization, Geneva, Switzerland, 1993). This Guide was prepared by ISO Technical Advisory Group 4 (TAG 4), Working Group 3 (WG 3). ISO/TAG 4 has as its sponsors the BIPM, IEC, IFCC (International Federation of Clinical Chemistry), ISO, IUPAC (International Union of Pure and Applied Chemistry), IUPAP (International Union of Pure and Applied Physics), and OIML. Although the individual members of WG 3 were nominated by the BIPM, IEC, ISO, or OIML, the Guide is published by ISO in the name of all seven organizations.Google Scholar

  • 26

    U.S. Guide to the Expression of Uncertainty in Measurement, ANSI/NCSL Z540-2-1997, NCSL International, Boulder, CO (1997).Google Scholar

  • 27

    R. G. Gilbert, M. Hess, A. D. Jenkins, R. G. Jones, P. Kratochvíl, R. F. T. Stepto. Pure Appl. Chem. 81, 351 (2009).Google Scholar

  • 28

    IUPAC. Compendium of Polymer Terminology and Nomenclature, IUPAC Recommendations 2008 (the “Purple Book”). Edited by R. G. Jones, J. Kahovec, R. Stepto, E. S. Wilks, M. Hess, T. Kitayama, W. V. Metanomski, RSC Publishing, Cambridge, UK (2008); Chap. 3.Google Scholar

  • 29

    B. N. Taylor, A. Thompson. The International System of Units (SI), NIST Special Publication 330, National Institute of Standards and Technology, Washington, DC (2008).Google Scholar

  • 30

    A. Thompson, B. N. Taylor. Guide for the Use of the International System of Units (SI), NIST Special Publication 811, National Institute of Standards and Technology, Washington, DC (2008).Google Scholar

  • 31

    Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB). Enzyme Nomenclature. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes by the Reactions They Catalyse. <http://www.chem.qmul.ac.uk/iubmb/ enzyme/>.Google Scholar

  • 32

    , H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, P. E. Bourne. Nucleic Acids Res. 28, 235 (2000).CrossrefGoogle Scholar

  • 33a

    , R. N. Goldberg, Y. B. Tewari, T. N. Bhat. Bioinformatics 20, 2874 (2004).CrossrefGoogle Scholar

  • 33b

    NIST Standard Reference Database 74, <http://xpdb.nist.gov/enzyme_thermodynamics>.Google Scholar

  • 34a

    , R. A. Alberty, A. Cornish-Bowden, Q. H. Gibson, R. N. Goldberg, G. Hammes, W. Jencks, K. F. Tipton, R. Veech, H. V. Westerhoff, E. C. Webb. Pure Appl. Chem. 66, 1641 (1994).CrossrefGoogle Scholar

  • 34b

    , R. A. Alberty, A. Cornish-Bowden, Q. H. Gibson, R. N. Goldberg, G. Hammes, W. Jencks, K. F. Tipton, R. Veech, H. V. Westerhoff, E. C. Webb. Eur. J. Biochem. 240, 1 (1996).CrossrefGoogle Scholar

  • 35

    , R. A. Alberty, A. Cornish-Bowden, R. N. Goldberg, G. G. Hammes, K. Tipton, H. V. Westerhoff. Biophys. Chem. 155, 89 (2011).CrossrefGoogle Scholar

  • 36a

    I. Wadsö, H. Gutfreund, P. Privalov, J. T. Edsall, W. P. Jencks, G. T. Strong, R. L. Biltonen. J. Biol. Chem. 251, 6879 (1976).Google Scholar

  • 36b

    I. Wadsö, H. Gutfreund, P. Privalov, J. T. Edsall, W. P. Jencks, G. T. Strong, R. L. Biltonen. Q. Rev. Biophys. 9, 439 (1976).Google Scholar

  • 37

    , I. Wadsö, R. L. Biltonen. Eur. J. Biochem. 153, 429 (1985).CrossrefGoogle Scholar

  • 38

    , H.-J. Hinz, F. P. Schwarz. Pure Appl. Chem. 73, 745 (2001).CrossrefGoogle Scholar

  • 39

    XML SPY v. 4.4 u. ALTOVA GmbH and ALTOVA, Inc., 1998–2002.Google Scholar

  • 40

    , H. Heerklotz. J. Phys.: Condens. Matter 16, R441 (2004).CrossrefGoogle Scholar

  • 41a

    I. Grenthe, J. Fuger, R. J. M. Konings, R. J. Lemire, A. B. Muller, C. Nguyen-Trung, H. Wanner. Chemical Thermodynamics, Vol. 1, Chemical Thermodynamics of Uranium, OECD Nuclear Energy Data Bank (Eds.), North Holland Elsevier Science, Amsterdam (1992).Google Scholar

  • 41b

    R. J. Silva, G. Bidoglio, P. B. Robouch, I. Puigdomènech, H. Wanner, M. H. Rand. Chemical Thermodynamics, Vol. 2, Chemical Thermodynamics of Americium, OECD Nuclear Energy Data Bank (Eds.), North Holland Elsevier Science, Amsterdam (1995).Google Scholar

  • 41c

    J. A. Rard, M. H. Rand, G. Anderegg, H. Wanner. Chemical Thermodynamics, Vol. 3, Chemical Thermodynamics of Technetium, OECD Nuclear Energy Data Bank (Eds.), North Holland Elsevier Science, Amsterdam (1999).Google Scholar

  • 41d

    R. J. Lemire, J. Fuger, H. Nitsche, P. Potter, M. H. Rand, J. Rydberg, K. Spahiu, J. C. Sullivan, W. J. Ullman, P. Vitorge, H. Wanner. Chemical Thermodynamics, Vol. 4, Chemical Thermodynamics of Neptunium and Plutonium, OECD Nuclear Energy Data Bank (Eds.), North Holland Elsevier Science, Amsterdam, Netherlands (2001).Google Scholar

  • 41e

    R. Guillaumont, T. Fanghänel, J. Fuger, I. Grenthe, V. Neck, D. A. Palmer, M. H. Rand. Chemical Thermodynamics, Vol. 5, Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technitium, OECD Nuclear Energy Data Bank (Eds.), North Holland Elsevier Science, Amsterdam, (2003).Google Scholar

  • 41f

    H. Gamsjäger, J. Bugajski, T. Gajda, R. J. Lemire, W. Preis. Chemical Thermodynamics, Vol. 6, Chemical Thermodynamics of Nickel, OECD Nuclear Energy Data Bank (Eds.), North Holland Elsevier Science, Amsterdam (2005).Google Scholar

  • 41g

    A. Olin, B. Nolang, E. G. Osadchii, L.-O. Öhman, E. Rosen. Chemical Thermodynamics, Vol. 7, Chemical Thermodynamics of Selenium, OECD Nuclear Energy Data Bank (Eds.), North Holland Elsevier Science, Amsterdam (2005).Google Scholar

  • 41h

    P. L. Brown, E. Curti, B. Grambow. Chemical Thermodynamics, Vol. 8, Chemical Thermodynamics of Zirconium, OECD Nuclear Energy Data Bank (Eds.), North Holland Elsevier Science, Amsterdam (2005).Google Scholar

  • 41i

    W. Hummel, G. Anderegg, I. Puigdomènech, L. Rao, O. Tochiyama. Chemical Thermodynamics, Vol. 9, Chemical Thermodynamics of Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr With Selected Organic Ligands, OECD Nuclear Energy Data Bank (Eds.), North Holland Elsevier Science, Amsterdam (2005).Google Scholar

  • 41j

    J. Bruno, D. Bosbach, D. Kulik, A. Navrotsky. Chemical Thermodynamics, Vol. 10, Chemical Thermodynamics of Solid Solutions of Interest in Radioactive Waste Management, OECD Nuclear Energy Data Bank (Eds.), OECD Publications, Paris (2007).Google Scholar

  • 41k

    M. Rand, J. Fuger, I. Grenthe, V. Neck, D. Rai. Chemical Thermodynamics, Vol. 11, Chemical Thermodynamics of Thorium, OECD Nuclear Energy Data Bank (Eds.), OECD Publications, Paris (2007).Google Scholar

  • 42

    The Organisation for Economic Co-operation and Development (OECD) <http://www.oecd.org>.Google Scholar

  • 43

    , N. A. Dubrovinskaia, L. S. Dubrovinsky. Mater. Chem. Phys. 68, 77 (2001).CrossrefGoogle Scholar

  • 44

    , R. D. Chirico, I. A. Hossenlopp, A. Nguyen, W. V. Steele, B. E. Gammon. J. Chem. Thermodyn. 21, 179 (1989).CrossrefGoogle Scholar

  • 45

    , M. A. V. Ribeiro da Silva, A. F. L. O. M. Santos, J. R. B. Gomes, M. V. Roux, M. Temprado, P. Jiménez, R. Notario. J. Phys. Chem. A 113, 11042 (2009).CrossrefGoogle Scholar

  • 46

    IUPAC. Quantities, Units and Symbols in Physical Chemistry, 3rd ed. (the “Green Book”). Prepared for publication by E. R. Cohen, T. Cvita?, J. G. Frey, B. Holmström, K. Kuchitsu, R. Marquardt, I. Mills, F. Pavese, M. Quack, J. Stohner, H. L. Strauss, M. Takami, A. J. Thor, RSC Publishing, Cambridge, UK (2007). First corrected printing (2008).Google Scholar

  • 47

    , S. K. Rakshit, S. C. Parida, S. Dash, Z. Singh, V. Venugopal. Thermochim. Acta 443, 98 (2006).CrossrefGoogle Scholar

  • 48

    , E. S. Hamborg, G. F. Versteeg. J. Chem. Eng. Data 54, 1318 (2009).CrossrefGoogle Scholar

  • 49

    , L. Ciavatta, V. Elia, E. Napoli, M. Niccoli. J. Solution Chem. 37, 1037 (2008).CrossrefGoogle Scholar

  • 50

    , L. G. Longsworth, D. A. MacInnes. J. Am. Chem. Soc. 60, 3070 (1938).CrossrefGoogle Scholar

  • 51

    D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney, R. L. Nuttall. “The NBS tables of chemical thermodynamic properties”, J. Phys. Chem. Ref. Data 11, Suppl. No. 2 (1982).Google Scholar

  • 52

    H. M. Rosenstock, K. Draxl, B. W. Steiner, J. T. Herron. “Energetics of gaseous ions”, J. Phys. Chem. Ref. Data 6, Suppl. No. 1 (1977).Google Scholar

  • 53

    M. W. Chase Jr. (Ed.). NIST-JANAF Thermochemical Tables, 4th ed., American Chemical Society, American Institute of Physics for the National Institute of Standards and Technology, Washington, DC (1998).Google Scholar

  • 54

    M. Nic. In Chemical Information Mining: Facilitating Literature-Based Discovery, D. L. Banville (Ed.), pp. 99–122, CRC Press, Boca Raton (2009).Google Scholar

  • 55

    E. Bolton, Y. Wang, P. A. Thiessen, S. H. Bryant. In Annual Reports in Computational Chemistry, Vol. 4, Chap. 12, American Chemical Society, Washington, DC (2008). See also <http://pubchem.ncbi.nlm.nih.gov/>.Google Scholar

  • 56

    InChI Version 1, Software Version 1.03 - implemented for both Standard and Non-standard (Customized) InChI/InChIKey <http://www.iupac.org/inchi/release103.html>.Google Scholar

  • 57

    IUPAC project 2000-025-1-800, "IUPAC International Chemical Identifier", A. D. McNaught <http://www.iupac.org/web/ins/2000-025-1-800>.Google Scholar

  • 58

    The InChI Trust <http://www.inchi-trust.org>.Google Scholar

  • 59

    A. Yu. Kuznetsov, L. S. Kudin, A. M. Pogrebnoi, M. F. Butman, G. G. Burdukovskaya. Zh. Fiz. Khim. 73, 566 (1999).Google Scholar

  • 60

    , P. Kratochvíl, U. W. Suter. Pure Appl. Chem. 61, 211 (1989).CrossrefGoogle Scholar

  • 61

    , E. Muñoz de Miguel, C. Yanes, A. Maestre. J. Chem. Eng. Data 46, 423 (2001).CrossrefGoogle Scholar

  • 62

    , H.-J. Hinz, F. P. Schwarz. J. Chem. Thermodyn. 33, 1511 (2001).CrossrefGoogle Scholar

  • 63

    , Y. B. Tewari, J. Chen, M. J. Holden, K. N. Houk, R. N. Goldberg. J. Phys. Chem. B 102, 8634 (1998).CrossrefGoogle Scholar

  • 64

    , N. A. Todorova, F. P. Schwarz. J. Chem. Thermodyn. 39, 1038 (2007).CrossrefGoogle Scholar

  • 65

    , R. Carta. J. Chem. Thermodyn. 30, 379 (1998).CrossrefGoogle Scholar

  • 66

    A. Ortiz, F. J. Aranda, J. Villalaín, J. C. Gómez-Fernández. Biochim. Biophys. Acta 1122, 226 (1992).Google Scholar

  • 67

    The LIPIDAT home page, <http://www.lipidat.tcd.ie/>.Google Scholar

  • 68

    , J. Chao, K. R. Hall, K. N. Marsh, R. C. Wilhoit. J. Phys. Chem. Ref. Data 15, 1369 (1986).CrossrefGoogle Scholar

About the article

Published Online: 2011-09-07

Published in Print: 2011-09-07


Citation Information: Pure and Applied Chemistry, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1351/PAC-REC-11-05-01.

Export Citation

© 2013 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Adele Peskin and Alden Dima
Integrating Materials and Manufacturing Innovation, 2017, Volume 6, Number 2, Page 187
[2]
E. A. Pfeif and K. Kroenlein
APL Materials, 2016, Volume 4, Number 5, Page 053203
[3]
Talapady N. Bhat, Laura M. Bartolo, Ursula R. Kattner, Carelyn E. Campbell, and John T. Elliott
JOM, 2015, Volume 67, Number 8, Page 1866
[4]
Michael Frenkel
The Journal of Chemical Thermodynamics, 2015, Volume 84, Page 18
[5]
Robert N. Goldberg
Perspectives in Science, 2014, Volume 1, Number 1-6, Page 7
[6]
Robert D. Chirico, Michael Frenkel, Joseph W. Magee, Vladimir Diky, Chris D. Muzny, Andrei F. Kazakov, Kenneth Kroenlein, Ilmutdin Abdulagatov, Gary R. Hardin, William E. Acree, Joan F. Brenneke, Paul L. Brown, Peter T. Cummings, Theo W. de Loos, Daniel G. Friend, Anthony R. H. Goodwin, Lee D. Hansen, William M. Haynes, Nobuyoshi Koga, Andreas Mandelis, Kenneth N. Marsh, Paul M. Mathias, Clare McCabe, John P. O’Connell, Agilio Pádua, Vicente Rives, Christoph Schick, J. P. Martin Trusler, Sergey Vyazovkin, Ron D. Weir, and Jiangtao Wu
Journal of Chemical & Engineering Data, 2013, Volume 58, Number 10, Page 2699

Comments (0)

Please log in or register to comment.
Log in